Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (684)
  • Open Access

    ARTICLE

    Performance of Compact Radial Basis Functions in the Direct Interpolation Boundary Element Method for Solving Potential Problems

    C. F. Loeffle1, L. Zamprogno2, W. J. Mansur3, A. Bulcão4

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.3, pp. 367-387, 2017, DOI:10.3970/cmes.2017.113.387

    Abstract This study evaluates the effectiveness of a new technique that transforms domain integrals into boundary integrals that is applicable to the boundary element method. Simulations were conducted in which two-dimensional surfaces were approximated by interpolation using radial basis functions with full and compact supports. Examples involving Poisson’s equation are presented using the boundary element method and the proposed technique with compact radial basis functions. The advantages and the disadvantages are examined through simulations. The effects of internal poles, the boundary mesh refinement and the value for the support of the radial basis functions on performance are assessed. More >

  • Open Access

    ARTICLE

    Acoustic Scattering Performance for Sources in Arbitrary Motion

    Yunpeng Ma1, Lifeng Wang1, *, Mingxu Yi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.1, pp. 89-108, 2017, DOI:10.3970/cmes.2017.113.086

    Abstract In this paper, an analytical time domain formulation based on Ffowcs Williams-Hawkings (FW-H) equation is derived for the prediction of the acoustic velocity field generated by moving bodies. This provides the imposition of the Neumann boundary condition on a rigid scattering surface. In order to calculate the scattering sound pressure of the duct, a thin-body boundary element method (BEM) has been proposed. The radiate sound pressure is calculated using the acoustic analogy FW-H equation. The scattering effect of the duct wall on the propagation of the sound wave is presented using the thin-body BEM. Computational results for a pulsating sphere,… More >

  • Open Access

    ARTICLE

    Aerodynamic Performance of DragonflyWing with Well-designed Corrugated Section in Gliding Flight

    Zilong Zhang1, Yajun Yin2, Zheng Zhong1,3, Hongxiao Zhao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.3, pp. 285-302, 2015, DOI:10.3970/cmes.2015.109.285

    Abstract Dragonflies possess the highly corrugated wings which distinguish from the ordinary airfoils. To unlock the secrets of the dramatic flight ability of dragonflies, it will be of great significance to investigate the aerodynamic contribution of the corrugations. In this paper, a group of corrugated airfoils were specially designed based on the geometrical characteristics of a typical dragonfly wing. The two-dimensional Navier-Stokes equations were solved using the finite volume method, and the coefficients of lift and drag of the studied airfoils were calculated and compared with those of a flat airfoil and a NACA0008 airfoil. The obtained numerical results illustrated that… More >

  • Open Access

    ARTICLE

    Texture Segmentation based on Multivariate Generalized Gaussian Mixture Model

    K. Naveen Kumar1, K. Srinivasa Rao2, Y. Srinivas3, Ch. Satyanarayana4

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.3, pp. 201-221, 2015, DOI:10.3970/cmes.2015.107.201

    Abstract Texture Analysis is one of the prime considerations for image analysis and processing. Texture segmentation gained lot of importance due to its ready applicability in automation of scene identification and computer vision. Several texture segmentation methods have been developed and analysed with the assumption that the feature vector associated with the texture of the image region is modelled as Gaussian mixture model. Due to the limitations of the Gaussian model being meso kurtic, it may not characterise the texture of all image regions accurately. Hence in this paper, a texture segmentation algorithm is developed and analysed with the assumption that… More >

  • Open Access

    ARTICLE

    Efficient Load-balancing Scheme for Multi-agent Simulation Systems

    K. Kuramoto1, M. Furuichi2, K. Kakuda2

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.3, pp. 169-186, 2015, DOI:10.3970/cmes.2015.106.169

    Abstract This paper describes a scheme to improve efficiency of multi-agent simulation system (MAS) on single computer that has multiple processor cores. Simulation technology is applied for broad usage in the world, and MAS gathers attention from the fields that treat complicated and non-numeric issues such as traffic analysis, analyzing evacuation from a building, and defense training. Since the requirements of simulation scale and fidelity are growing, the importance of their performance is also increasing. However, CPU clock speedup is slowing, and improvement of computer performance has come to depend on the number of processors, cores, and graphics processing units. Consequently,… More >

  • Open Access

    ARTICLE

    The Use of High-Performance Fatigue Mechanics and the Extended Kalman / Particle Filters, for Diagnostics and Prognostics of Aircraft Structures

    Hai-Kun Wang1,2, Robert Haynes3, Hong-Zhong Huang1, Leiting Dong2,4, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.1, pp. 1-24, 2015, DOI:10.3970/cmes.2015.105.001

    Abstract In this paper, we propose an approach for diagnostics and prognostics of damaged aircraft structures, by combing high-performance fatigue mechanics with filtering theories. Fast & accurate deterministic analyses of fatigue crack propagations are carried out, by using the Finite Element Alternating Method (FEAM) for computing SIFs, and by using the newly developed Moving Least Squares (MLS) law for computing fatigue crack growth rates. Such algorithms for simulating fatigue crack propagations are embedded in the computer program Safe- Flaw, which is called upon as a subroutine within the probabilistic framework of filter theories. Both the extended Kalman as well as particle… More >

  • Open Access

    ARTICLE

    Comparison and Performance Analysis of Multiple CPU/GPU Computing Systems – Resin Infusion Flow Modeling Application

    R.H. Haney1, R.V. Mohan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.5, pp. 431-452, 2013, DOI:10.3970/cmes.2013.095.431

    Abstract The use of Graphics Processing Units (GPUs) as co-processors for single CPU/GPU computing systems has become pronounced in high performance computing research, however the solution of truly large scale computationally intensive problems require the utilization of multiple computing nodes. Multiple CPU/GPU computing systems bring new complexities to the observed performance of computationally intensive applications, the more salient of which is the cost of local CPU-GPU host and intra-nodal communication. This paper compares and analyzes the performance of a computationally intensive application represented by resin infusion flow during liquid composite molding process for the manufacture of structural composites application via two… More >

  • Open Access

    ARTICLE

    The Second-Order Two-Scale Method for Heat Transfer Performances of Periodic Porous Materials with Interior Surface Radiation

    Zhiqiang Yang1, Junzhi Cui2, Yufeng Nie1, Qiang Ma2

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.5, pp. 419-442, 2012, DOI:10.3970/cmes.2012.088.419

    Abstract In this paper, a new second-order two-scale (SOTS) method is developed to predict heat transfer performances of periodic porous materials with interior surface radiation. Firstly, the second-order two-scale formulation for computing temperature field of the problem is given by means of construction way. Then, the error estimation of the second-order two-scale approximate solution is derived on some regularity hypothesis. Finally, the corresponding finite element algorithms are proposed and some numerical results are presented. They show that the SOTS method in this paper is feasible and valid for predicting the heat transfer performances of periodic porous materials. More >

  • Open Access

    ARTICLE

    An Implementation of the Longman's Integration Method on Graphics Hardware

    E. Mesquita1, J.Labaki 1 and L.O.S.Ferreira1

    CMES-Computer Modeling in Engineering & Sciences, Vol.51, No.2, pp. 143-168, 2009, DOI:10.3970/cmes.2009.051.143

    Abstract There is a growing trend towards solving problems of computational mechanics by parallelization strategies. The traditional approach is to implement the parallelization procedures on CPUs based on the MPI or OpenMP paradigms. Recent efforts have been made to implement computational tasks on general-purpose programmable graphics hardware (GPGPU). The GPU is specially well-suited to address problems that can be formulated in form of data-parallel computations with high arithmetic intensity. This work addresses the implementation of the Longman's integration method on graphics hardware. A serial implementation of Longman's method was rewritten under the SIMD (Single Input Multiple Data) parallel programming paradigm. The… More >

  • Open Access

    ARTICLE

    Performance of Multiquadric Collocation Method in Solving Lid-driven Cavity Flow Problem with Low Reynolds Number

    S. Chantasiriwan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.3, pp. 137-146, 2006, DOI:10.3970/cmes.2006.015.137

    Abstract The multiquadric collocation method is the collocation method based on radial basis function known as multiquadrics. It has been successfully used to solve several linear and nonlinear problems. Although fluid flow problems are among problems previously solved by this method, there is still an outstanding issue regarding the influence of the free parameter of multiquadrics (or the shape parameter) on the performance of the method. This paper provides additional results of using the multiquadric collocation method to solve the lid-driven cavity flow problem. The method is used to solve the problem in the stream function-vorticity formulation and the velocity-vorticity formulation.… More >

Displaying 651-660 on page 66 of 684. Per Page