Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ARTICLE

    ON MODELING OF HEAT AND MASS TRANSFER AND OTHER TRANSPORT PHENOMENA IN FUEL CELLS

    Bengt Sundén*, Jinliang Yuan

    Frontiers in Heat and Mass Transfer, Vol.1, No.1, pp. 1-20, 2010, DOI:10.5098/hmt.v1.1.3008

    Abstract Depending on specific configuration and design, a variety of physical phenomena is present in fuel cells, e.g., multi-component gas flow, energy and mass transfer of chemical species in composite domains and sites. These physical phenomena are strongly affected by chemical/electrochemical reactions in nano-/micro-scale structured electrodes and electrolytes. Due to the electrochemical reactions, generation and consumption of chemical species together with electric current production take place at the active surfaces for all kinds of fuel cells. Furthermore, water management and twophase flow in proton exchange membrane fuel cells (PEMFCs) and internal reforming reactions of hydrocarbon fuels in solid oxide fuel cells… More >

  • Open Access

    ARTICLE

    RECENT ADVANCES IN UNDERSTANDING OF MASS TRANSFER PHENOMENA IN DIRECT METHANOL FUEL CELLS OPERATING WITH CONCENTRATED FUEL

    Q.X. Wua, Y.L. Heb, T.S. Zhaoa,b,*

    Frontiers in Heat and Mass Transfer, Vol.2, No.3, pp. 1-14, 2011, DOI:10.5098/hmt.v2.3.2001

    Abstract Running direct methanol fuel cells (DMFC) with concentrated fuel is desirable to maximize the specific energy of the fuel cell system and to improve the performance by mitigating the water flooding problem associated with diluted methanol operation. This article provides a comprehensive review of recent advances in understanding mass transport phenomena in DMFCs operating with concentrated fuel. The review starts with elaborating the key issues of mass transport of reactants and products associated with highly-concentrated methanol operation, followed by summarizing and discussing past experimental and numerical investigations into the effects of the membrane electrode assembly (MEA) design, flow field structure… More >

  • Open Access

    ARTICLE

    CONTACT ANGLE MEASUREMENTS FOR ADVANCED THERMAL MANAGEMENT TECHNOLOGIES

    Sally M. Smith*, Brenton S. Taft , Jacob Moulton

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-9, 2014, DOI:10.5098/hmt.5.6

    Abstract This study investigates the wettability of fluid-solid interactions of interest for oscillating heat pipe (OHP) applications. Measurements were taken using two techniques: the sessile drop method and capillary rise at a vertical plate. Tested surface materials include copper, aluminum, and Teflon PFA. The working fluids tested were water, acetone, R-134a, and HFO-1234yf. A novel low-pressure experimental setup was developed for refrigerant testing. Results show that the refrigerants have significantly lower hysteresis than the water and acetone-based systems, which is thought to lead to better heat transfer in OHP design. More >

  • Open Access

    ARTICLE

    Simulation of Two-Phase Flowback Phenomena in Shale Gas Wells

    Yongwei Duan, Zhaopeng Zhu, Hui He*, Gaoliang Xuan, Xuemeng Yu

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 349-364, 2024, DOI:10.32604/fdmp.2023.042659

    Abstract The gas-water two-phase flow occurring as a result of fracturing fluid flowback phenomena is known to impact significantly the productivity of shale gas well. In this work, this two-phase flow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model (EDFM). This model assumes the region outside the stimulated reservoir volume (SRV) as a single-medium while the SRV region itself is described using a double-medium strategy which can account for the fluid exchange between the matrix and the micro-fractures. The shale gas adsorption, desorption, diffusion, gas slippage effect, fracture stress sensitivity, and… More >

  • Open Access

    ARTICLE

    Study of Double Diffusivity and Heat Conducting Phenomena under the Casson Nanofluid Flowing through a Vertical Peristaltic Tube

    Azad Hussain1,*, Naila Farooq1, Ayesha Saddiqa1, Ahmad M. Hassan2, Abdulkafi Mohammed Saeed3

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 563-590, 2023, DOI:10.32604/fhmt.2023.042818

    Abstract The current article discusses the peristaltic flow of the Casson fluid model with implications for double diffusivity, radiative flux, variable conductivity and viscosity. This study offers a thorough understanding of the functioning and illnesses of embryological organs, renal systems, respiratory tracts, etc., that may be useful to medical professionals and researchers. The main purpose of the study is to evaluate the consequences of double diffusivity on the peristaltic flow of nanofluid. By implementing the appropriate transformation, the governed differential equations of momentum, temperature, concentration and double diffusivity are worked out numerically. The lowest Reynolds number and highest wavelength are used.… More >

  • Open Access

    ARTICLE

    Mathematical Study of MHD Micropolar Fluid Flow with Radiation and Dissipative Impacts over a Permeable Stretching Sheet: Slip Effects Phenomena

    Pudhari Srilatha1, Ahmed M. Hassan2, B. Shankar Goud3,*, E. Ranjit Kumar4

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 539-562, 2023, DOI:10.32604/fhmt.2023.043023

    Abstract The purpose of this research is to investigate the influence that slip boundary conditions have on the rate of heat and mass transfer by examining the behavior of micropolar MHD flow across a porous stretching sheet. In addition to this, the impacts of thermal radiation and viscous dissipation are taken into account. With the use of various computing strategies, numerical results have been produced. Similarity transformation was utilized in order to convert the partial differential equations (PDEs) that regulated energy, rotational momentum, concentration, and momentum into ordinary differential equations (ODEs). As compared to earlier published research, MATLAB inbuilt solver solution… More > Graphic Abstract

    Mathematical Study of MHD Micropolar Fluid Flow with Radiation and Dissipative Impacts over a Permeable Stretching Sheet: Slip Effects Phenomena

  • Open Access

    ARTICLE

    MAGNETOCONVECTION AND IRREVERSIBILITY PHENOMENA WITHIN A LID DRIVEN CAVITY FILLED WITH LIQUID METAL UNDER MAGNETIC FIELD

    Fakher Oueslatia,b,†, Brahim Ben-Beyab

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-11, 2017, DOI:10.5098/hmt.8.38

    Abstract The current study deals with a numerical investigation of magnetoconvection and entropy generation within a lid driven square cavity subject to uniform magnetic field and filled with liquid metal. Effects of multiple parameters namely; the Prandtl, Hartmann and Richardson numbers were predicted and analyzed using a numerical methodology based on the finite volume method and a full multigrid technique. The numerical outcome of the present study shows that, the enhancement of Hartmann number declines the heat transfer rate for all liquid metals considered. Moreover, it is observed that augmenting the Richardson number leads to acceleration of the flow with a… More >

  • Open Access

    ARTICLE

    MATHEMATICAL STUDY OF NON-NEWTONIAN NANOFLUID TRANSPORT PHENOMENA FROM AN ISOTHERMAL SPHERE

    CH. Amanullaa,b , N. Nagendraa,1 , M. Surya Narayana Reddyb , A. Subba Raoa , O. Anwar Bégc

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-13, 2017, DOI:10.5098/hmt.8.29

    Abstract In this article, the heat, momentum and mass (species) transfer in external boundary layer flow of Casson nanofluid from an isothermal sphere surface is studied theoretically. The effects of Brownian motion and thermophoresis are incorporated in the model in the presence of both heat and nanoparticle mass transfer. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial differential equations consisting of the momentum, energy and concentration equations via appropriate non-similarity transformations. These transformed conservation equations are solved subject to appropriate boundary conditions with a second order accurate finite difference method of the implicit type.… More >

  • Open Access

    ARTICLE

    STEADY-STATE TRANSPORT PHENOMENA ON INDUCED MAGNETIC FIELD MODELLING FOR NON-NEWTONIAN TANGENT HYPERBOLIC FLUID FROM AN ISOTHERMAL SPHERE WITH SORET AND DUFOUR EFFECTS

    A. Subba Raoa,*, L. Nagarajaa,b, M. Sudhakar Reddya , M. Surya Narayana Reddyb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-11, 2017, DOI:10.5098/hmt.9.17

    Abstract This article investigates the theoretical steady magneto hydrodynamic heat flow of incompressible non-Newtonian Tangent Hyperbolic fluid flow over a sphere with Soret and Dufour effects. The governing coupled non-linear partial differential equations are reduced to non-similarity boundary layer equations using appropriate transformation and then solved using the finite difference Keller-Box method. The effect of various flow parameters on the velocity, temperature and concentration are analyzed and presented graphically. More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Influence of Turbulence Intensity on Iced Conductors Gallop Phenomena

    Yuantao Liu1, Yanzhe Li1,*, Shanpeng Zhao1,2, Youpeng Zhang1, Taizhen Zhang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2533-2547, 2023, DOI:10.32604/fdmp.2023.027471

    Abstract Turbulence is expected to play a relevant role in the so-called conductor gallop phenomena, namely, the highamplitude, low-frequency oscillation of overhead power lines due to the formation of ice structures and the ensuing effect that wind can have on these. In this work, the galloping time history of a wire with distorted (fixed in time) shape due to the formation of ice is analyzed numerically in the frame of a fluid-solid coupling method for different wind speeds and levels of turbulence. The results show that the turbulence intensity has a moderate effect on the increase of the conductor’s aerodynamic lift… More > Graphic Abstract

    Numerical Analysis of the Influence of Turbulence Intensity on Iced Conductors Gallop Phenomena

Displaying 1-10 on page 1 of 34. Per Page