Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Improved Thermophysical Properties of Developed Ternary Nitrate-Based Phase Change Material Incorporated with MXene as Novel Nanocomposites

    I. Samylingam1, Navid Aslfattahi2, K. Kadirgama1,*, Mahendran Samykano3, L. Samylingam4, R. Saidur4,5

    Energy Engineering, Vol.118, No.5, pp. 1253-1265, 2021, DOI:10.32604/EE.2021.016087

    Abstract In this study, nanocomposite of ternary nitrate molten salt induced with MXene is developed. LiNO3-NaNO3-KNO3 with wt% of 35:12:53 and 35:10:55 are produced and doped with MXene in the wt% of 0.2, 0.5, 1.0, and 1.5. FTIR result indicates the composites had no chemical reaction occurred during the preparation. UV-VIS analysis shows the absorption enhancement with respect to the concentration of MXene. Thermogravimetric analysis (TGA) was used to measure the thermal stability of the LiNO3-NaNO3-KNO3 induced with MXene. The ternary molten salts were stable at temperature range of 600–700°C. Thermal stability increases with the addition of MXene. 1.5 wt% of… More >

  • Open Access

    ARTICLE

    Physical Properties of SiC Nanostructure for Optoelectronics Applications

    Mayyadah H. Mohsin1, Najwan H. Numan2, Evan T. Salim1,*, Makram A. Fakhri2,*

    Journal of Renewable Materials, Vol.9, No.9, pp. 1519-1530, 2021, DOI:10.32604/jrm.2021.015465

    Abstract A SiC nanofilms have been deposited and investigated on quartz and silicon substrates using pulsed laser deposition technique with the 300 pulses of Nd: YAG laser at two different laser wavelengths of 1064 nm and 532 nm. The structural, morphological, and optical properties of the deposited nanostructure SiC were prepared and characterized as a function of the wavelengths of the used laser. The structural result shows four different pecks at (111), (200), (220), and (311) planes related to Nano SiC. The transmission result presents that the optical energy gap value for the SiC nanostructure is depended on the wavelength of… More > Graphic Abstract

    Physical Properties of SiC Nanostructure for Optoelectronics Applications

  • Open Access

    ARTICLE

    Evaluation of Mechanical and Physical Properties of Pressed Coir Fiber/Epoxy Composite with NaOH and Microwave Treatment of Fiber

    Ilyas Renreng1, Bakri Bakri2,*, Sri Chandrabakty2, Naharuddin2

    Journal of Renewable Materials, Vol.9, No.2, pp. 325-335, 2021, DOI:10.32604/jrm.2021.012774

    Abstract In this study, the influence of sodium hydroxide (NaOH) treatment and microwave treatment of coir fibers on the mechanical and physical properties of pressed coir fiber/epoxy composite were evaluated. The composite was fabricated with a hand lay-up method with compression molding. Before composite fabrication, pressed coir fiber was treated with NaOH and microwave treatments. Mechanical testing (tensile, flexural, and impact testing) of the composite was conducted. Then, water absorption and thickness swelling testing are also performed. The fractured composite surface morphology after the tensile test was analyzed by scanning electronic microscopy (SEM). The results revealed that tensile, flexural, and impact… More >

  • Open Access

    ABSTRACT

    Biophysical Properties and Motility of Human Dendritic Cells Deteriorated by Suppressive Cytokines Through Cytoskeleton Remodeling

    Zhu Zeng1,*, Zuquan Hu1, Qinni Zheng1, Xiaoli Xu1, Rong Dong1, Hui Xue1, Hui Yang1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 68-69, 2019, DOI:10.32604/mcb.2019.07085

    Abstract Dendritic cells (DCs) play a crucial role in initiating and amplifying both the innate and adaptive immune responses [1]. Clinically, the DCs-based immunotherapy against cancer is considered one of the most promising therapies to overcome cancers, but there are still many challenges need to be overcome [2]. The motility of DCs is especially crucial for migration of immature DCs into peripheral tissue and dynamic physical interaction between mature DCs and naive T cells in the secondary lymph node. This study focuses on the investigations of DCs at different differentiation stages and under various suppressive cytokines (VEGF, TGF-β1 and IL-10) conditioned… More >

  • Open Access

    ARTICLE

    Thermal Responses of Woods Exposed to High Temperatures Considering Apparent Thermo-Physical Properties

    Yun Zhang1, Lingfeng Zhang2, Zhiwei Shan3, Lu Wang1,*, Weiqing Liu1

    Journal of Renewable Materials, Vol.7, No.11, pp. 1093-1108, 2019, DOI:10.32604/jrm.2019.07335

    Abstract It is well known that the use of woods as construction materials can embody carbon content of structural members, which can enhance the urban sustainability. However, due to the combustibility of wood, its current application is restricted. To broaden the application of wood, its thermal responses exposed to fire (high temperature) is investigated in this study. Firstly, the wood kinetic parameters are determined by coats-redfern method using thermal gravimetric (TGA) data. Secondly, the density and thermal conductivity are obtained from parallel and series models. Thirdly, the specific heat capacity formula is presented considering latent and decomposition heat, which can be… More >

  • Open Access

    ARTICLE

    Lightweight Biobased Polyurethane Nanocomposite Foams Reinforced with Pineapple Leaf Nanofibers (PLNFs)

    Xiaojian Zhou1,2, Hui Wang1, Jun Zhang2, Zhifeng Zheng1, Guanben Du1,2,*

    Journal of Renewable Materials, Vol.6, No.1, pp. 68-74, 2018, DOI:10.7569/JRM.2017.634150

    Abstract Pineapple leaf nanofibers (PLNFs) extracted from pineapple leaf fiber were used for reinforcing biobased polyurethane foam (BPU). The dispersion performance of PLNF in the foaming mixture system, nanocomposite foaming behavior, cell morphology, cell size, density, compressive strength and dimensional stability were investigated. The viscosity of the mixtures increased with increasing the PLNF content. The addition of a tiny amount of PLNF did not influence the exothermic temperature of the foam system, but reduced the expansion and gel time of the nanocomposite foams. This reduced time was found to increase the production efficiency. Scanning electron microscopy (SEM) images showed that the… More >

  • Open Access

    ARTICLE

    The Effects of Gamma Irradiation on Molecular Weight, Morphology and Physical Properties of PHBV/Cloisite 30B Bionanocomposites

    Kahina Iggui1,2,*, Mustapha Kaci1, Mohamed Mahlous3, Nicolas Le Moigne4, Anne Bergeret4

    Journal of Renewable Materials, Vol.7, No.9, pp. 807-820, 2019, DOI:10.32604/jrm.2019.06778

    Abstract In this paper, the effects of gamma irradiation on Cast poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and PHBV/Cloisite 30B (C30B) (3 wt%) bionanocomposite prepared by melt compounding, were evaluated at various doses, i.e., 5, 15, 20, 50 and 100 kGy at room temperature in air. Changes in molecular weight, morphology and physical properties were investigated. The study showed that the main degradation mechanism occurring in gamma irradiation in both Cast PHBV and C-PHBV/3C30B bionanocomposite is chain scission, responsible for the decrease of molecular weight. Differential scanning calorimetry (DSC) data indicated a regular decrease in crystallization temperature, melting temperature and crystallinity index for all irradiated… More >

  • Open Access

    ARTICLE

    Synthesis of a Fully Biobased Polyfunctional Vinyl Oligomer and Their UV Cured Films Prepared via Thiol-ene Coupling

    Changqing Fu1,2, Jiahui Wang1,2, Lie Chen1,2, Liang Shen1,2,*

    Journal of Renewable Materials, Vol.7, No.8, pp. 795-805, 2019, DOI:10.32604/jrm.2019.07503

    Abstract In this paper, a fully bio-based vinyl oligomer with high functionalities was successfully prepared from rapeseed oil by three modification steps: epoxidation of rapeseed oil, solvent-free and catalyst-free ring opening by 10-undecylenic acid followed by esterification with 10-undecenoyl chloride. Then, the renewable polymers were prepared by photo-polymerization of these modified vegetable oils with typical thiol monomers: pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tris (3-mercaptopropionate) and 1,2-ethanedithiol. The synthesis of the vinyl oligomer was monitored by nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The average number of the carbon-carbon double bonds of the resulting vinyl oligomer is high to be 7.2. The kinetic… More >

  • Open Access

    ARTICLE

    Particleboard Based on Rice Husk: Effect of Binder Content and Processing Conditions

    E. M. Ciannamea, D. C. Marin, R. A. Ruseckaite, P. M. Stefani*

    Journal of Renewable Materials, Vol.5, No.5, pp. 357-362, 2017, DOI:10.7569/JRM.2017.634125

    Abstract In the development of materials based on renewable resources, the search for lignocellulosic substitutes for wood is one of the biggest challenges that academia and the particleboard and wood industries are facing. In this article, particleboards were processed using rice husk, an agricultural waste, as a substitute for wood. Rice husk without any further treatment was processed into particleboards using phenol-formaldehyde resin as binder. The effect of the processing parameters, pressure and binder content (BC) on the density, water absorption (WA), thickness swelling (TS), modulus of rupture (MOR) and modulus of elasticity (MOE) was analyzed. The performance of the obtained… More >

  • Open Access

    ARTICLE

    Variation of Physical Properties of Rigid Polyurethane Foams Synthesized from Renewable Sources with Different Commercial Catalysts

    Daniel Brenes-Granados1, Jorge M. Cubero-Sesin1,2, Felipe Orozco Gutiérrez3, Jose Vega-Baudrit3, Rodolfo Gonzalez-Paz3*

    Journal of Renewable Materials, Vol.5, No.3-4, pp. 280-289, 2017, DOI:10.7569/JRM.2017.634118

    Abstract In this work, rigid polyurethane foams were synthesized from renewable sources using different catalysts to study their effect on the mechanical, thermal, chemical and surface properties of the foams. A commercial foam pattern was used as the reference pattern to compare the aforementioned properties. Concentrations of the commercial catalysts were optimized to obtain foams with similar mechanical properties to the commercial foam. Morphological characterization of the foams was performed by scanning electron microscopy (SEM). Fourier transform infrared (FTIR) spectroscopy was employed to investigate the characteristic functional groups. Thermal characterization was performed by means of differential scanning calorimetry (DSC) and thermogravimetric… More >

Displaying 11-20 on page 2 of 24. Per Page