Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    An Efficient Simultaneous Estimation of Temperature-Dependent Thermophysical Properties

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.2, pp. 77-90, 2006, DOI:10.3970/cmes.2006.014.077

    Abstract In this paper we derive the first-order and second-order one-step GPS applied to the estimation of thermophysical properties. Solving the resultant algebraic equations, which usually converges within ten iterations, it is not difficult to estimate the unknown temperature-dependent thermal conductivity and heat capacity simultaneously, if some supplemented data of measured temperature at a time T is provided. When the measured temperature in the conducting slab is contaminated by noise, our estimated results are also good. The new method does not require any prior information on the functional forms of thermal conductivity and heat capacity. Numerical examples are examined to show… More >

  • Open Access

    ARTICLE

    Determination of Physical Properties of Porous Materials by a Lattice Boltzmann Approach

    M.R. Arab1,2, E. Semma3, B. Pateyron1, M. El Ganaoui1

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.2, pp. 161-176, 2009, DOI:10.3970/fdmp.2009.005.161

    Abstract In this work, flows in porous media are simulated by using a Lattice Boltzmann Method (LBM). A model D2Q9 with a single collision operator is proposed. This method is applied on 2D digital images obtained by a Scanning Electron Microscope technique (SEM), and followed by a special treatment in order to obtain an image of synthesis that is finally read by the numerical code. The first results tested on two-dimensional configurations show the reliability of this strategy in simulating with a good accuracy phenomena of heat and mass transport. The numerical study is extended to the prediction of physical parameters… More >

  • Open Access

    ARTICLE

    Electromagnetic Levitation Part III: Thermophysical Property Measurements in Microgravity

    Sayavur I. Bakhtiyarov1, Dennis A. Siginer2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 1-22, 2009, DOI:10.3970/fdmp.2009.005.001

    Abstract Strong inhomogeneous magnetic fields are necessary to generate a finite levitation force in ground based electromagnetic levitation techniques. External forces such as magnetic and gravitational forces influence the oscillation spectrum and counteract the surface movement resulting in a frequency shift, and making the use of electromagnetic levitation techniques in microgravity an attractive alternative to measure thermophysical properties of liquid metals. Under microgravity conditions the magnetic field strength around a liquid droplet is significantly lower than that required to position the same specimen against earth gravity. Hence, a low magnetic field strength results in a low amount of heat energy absorbed… More >

  • Open Access

    ARTICLE

    Electromagnetic Levitation Part I: Theoretical and Experimental Considerations

    Sayavur I. Bakhtiyarov1, Dennis A. Siginer2

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.2, pp. 99-112, 2008, DOI:10.3970/fdmp.2008.004.099

    Abstract Levitation of liquid bodies against gravity is a contactless confinement process appropriate for manufacturing very pure materials. A variety of levitation techniques have been developed over the last few decades, such as aerodynamic, acoustic, electrostatic, microwave, and electromagnetic levitations. More recently, a new generation of novel techniques, essentially combinations of the established primary techniques, has been successfully introduced. Examples are acoustic-electric, aerodynamic-acoustic and acoustic-electromagnetic. The purpose of this series of papers in three parts, Bakhtiyarov and Siginer (2007a,b), is to review the advances in electromagnetic levitation (EML) since its introduction as a containerless melting technique, and a tool for the… More >

Displaying 21-30 on page 3 of 24. Per Page