Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (91)
  • Open Access

    ARTICLE

    Rolling Decision Model of Thermal Power Retrofit and Generation Expansion Planning Considering Carbon Emissions and Power Balance Risk

    Dong Pan1, Xu Gui1, Jiayin Xu1, Yuming Shen1, Haoran Xu2, Yinghao Ma2,*

    Energy Engineering, Vol.121, No.5, pp. 1309-1328, 2024, DOI:10.32604/ee.2024.046464

    Abstract With the increasing urgency of the carbon emission reduction task, the generation expansion planning process needs to add carbon emission risk constraints, in addition to considering the level of power adequacy. However, methods for quantifying and assessing carbon emissions and operational risks are lacking. It results in excessive carbon emissions and frequent load-shedding on some days, although meeting annual carbon emission reduction targets. First, in response to the above problems, carbon emission and power balance risk assessment indicators and assessment methods, were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios, considering power supply regulation… More >

  • Open Access

    ARTICLE

    A Novel Defender-Attacker-Defender Model for Resilient Distributed Generator Planning with Network Reconfiguration and Demand Response

    Wenlu Ji*, Teng Tu, Nan Ma

    Energy Engineering, Vol.121, No.5, pp. 1223-1243, 2024, DOI:10.32604/ee.2024.046112

    Abstract To improve the resilience of a distribution system against extreme weather, a fuel-based distributed generator (DG) allocation model is proposed in this study. In this model, the DGs are placed at the planning stage. When an extreme event occurs, the controllable generators form temporary microgrids (MGs) to restore the load maximally. Simultaneously, a demand response program (DRP) mitigates the imbalance between the power supply and demand during extreme events. To cope with the fault uncertainty, a robust optimization (RO) method is applied to reduce the long-term investment and short-term operation costs. The optimization is formulated as a tri-level defender-attacker-defender (DAD)… More >

  • Open Access

    ARTICLE

    Efficient Route Planning for Real-Time Demand-Responsive Transit

    Hongle Li1, SeongKi Kim2,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 473-492, 2024, DOI:10.32604/cmc.2024.048402

    Abstract Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetables and determines the stop and the start according to the demands. This study explores the optimization of dynamic vehicle scheduling and real-time route planning in urban public transportation systems, with a focus on bus services. It addresses the limitations of current shared mobility routing algorithms, which are primarily designed for simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. The research introduces an route planning algorithm designed to dynamically accommodate passenger travel needs and enable real-time route modifications.… More >

  • Open Access

    ARTICLE

    Path Planning for AUVs Based on Improved APF-AC Algorithm

    Guojun Chen*, Danguo Cheng, Wei Chen, Xue Yang, Tiezheng Guo

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3721-3741, 2024, DOI:10.32604/cmc.2024.047325

    Abstract With the increase in ocean exploration activities and underwater development, the autonomous underwater vehicle (AUV) has been widely used as a type of underwater automation equipment in the detection of underwater environments. However, nowadays AUVs generally have drawbacks such as weak endurance, low intelligence, and poor detection ability. The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks. To improve the underwater operation ability of the AUV, this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm. In response to the limitations of a single… More >

  • Open Access

    ARTICLE

    An Improved Bounded Conflict-Based Search for Multi-AGV Pathfinding in Automated Container Terminals

    Xinci Zhou, Jin Zhu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2705-2727, 2024, DOI:10.32604/cmes.2024.046363

    Abstract As the number of automated guided vehicles (AGVs) within automated container terminals (ACT) continues to rise, conflicts have become more frequent. Addressing point and edge conflicts of AGVs, a multi-AGV conflict-free path planning model has been formulated to minimize the total path length of AGVs between shore bridges and yards. For larger terminal maps and complex environments, the grid method is employed to model AGVs’ road networks. An improved bounded conflict-based search (IBCBS) algorithm tailored to ACT is proposed, leveraging the binary tree principle to resolve conflicts and employing focal search to expand the search range. Comparative experiments involving 60… More >

  • Open Access

    ARTICLE

    A Reverse Path Planning Approach for Enhanced Performance of Multi-Degree-of-Freedom Industrial Manipulators

    Zhiwei Lin1, Hui Wang1,*, Tianding Chen1, Yingtao Jiang2, Jianmei Jiang3, Yingpin Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1357-1379, 2024, DOI:10.32604/cmes.2023.045990

    Abstract In the domain of autonomous industrial manipulators, precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance, such as handling, heat sealing, and stacking. While Multi-Degree-of-Freedom (MDOF) manipulators offer kinematic redundancy, aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites, their path planning entails intricate multi-objective optimization, encompassing path, posture, and joint motion optimization. Achieving satisfactory results in practical scenarios remains challenging. In response, this study introduces a novel Reverse Path Planning (RPP) methodology tailored for industrial manipulators. The approach commences by conceptualizing the manipulator’s end-effector as an… More > Graphic Abstract

    A Reverse Path Planning Approach for Enhanced Performance of Multi-Degree-of-Freedom Industrial Manipulators

  • Open Access

    ARTICLE

    Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm

    Xiaoge Wei1,2,*, Yuming Zhang1,2, Huaitao Song1,2, Hengjie Qin1,2, Guanjun Zhao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1295-1316, 2024, DOI:10.32604/cmes.2023.045096

    Abstract Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years. As part of this effort, an enhanced sparrow search algorithm (MSSA) was proposed. Firstly, the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm. Secondly, the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima. Finally, the local search mechanism based on the mountain climbing method was incorporated into the local search stage of… More >

  • Open Access

    ARTICLE

    An Enhanced Equilibrium Optimizer for Solving Optimization Tasks

    Yuting Liu1, Hongwei Ding1,*, Zongshan Wang1,*, Gaurav Dhiman2,3,4, Zhijun Yang1, Peng Hu5

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2385-2406, 2023, DOI:10.32604/cmc.2023.039883

    Abstract The equilibrium optimizer (EO) represents a new, physics-inspired metaheuristic optimization approach that draws inspiration from the principles governing the control of volume-based mixing to achieve dynamic mass equilibrium. Despite its innovative foundation, the EO exhibits certain limitations, including imbalances between exploration and exploitation, the tendency to local optima, and the susceptibility to loss of population diversity. To alleviate these drawbacks, this paper introduces an improved EO that adopts three strategies: adaptive inertia weight, Cauchy mutation, and adaptive sine cosine mechanism, called SCEO. Firstly, a new update formula is conceived by incorporating an adaptive inertia weight to reach an appropriate balance… More >

  • Open Access

    ARTICLE

    Research of Electric Cable Path Planning Based on Heuristic Optimization Algorithm in Mixed-Land Scenario

    Tianfeng Xu1, Tao Wang1, Chengming Ye2, Jing Zhang1, Peng Xi1, Yunhui Chen2, Gengwu Zhang3,*

    Energy Engineering, Vol.120, No.11, pp. 2629-2650, 2023, DOI:10.32604/ee.2023.027537

    Abstract In order to improve the reliability of power supply, the sophisticated design of the structure of electric cable network has become an important issue for modern urban distribution networks. In this paper, an electric cable path planning model based on heuristic optimization algorithm considering mixed-land scenario is proposed. Firstly, based on different land samples, the kernel density estimation (KDE) and the analytic hierarchy process (AHP) are used to estimate the construction cost of each unit grid, in order to construct the objective function of comprehensive investment for electric cable loop network. Then, the ant colony optimization (ACO) was improved in… More >

  • Open Access

    ARTICLE

    LSDA-APF: A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment

    Xiaoli Li, Tongtong Jiao#, Jinfeng Ma, Dongxing Duan, Shengbin Liang#,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 595-617, 2024, DOI:10.32604/cmes.2023.029367

    Abstract In view of the complex marine environment of navigation, especially in the case of multiple static and dynamic obstacles, the traditional obstacle avoidance algorithms applied to unmanned surface vehicles (USV) are prone to fall into the trap of local optimization. Therefore, this paper proposes an improved artificial potential field (APF) algorithm, which uses 5G communication technology to communicate between the USV and the control center. The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios. Considering the various scenarios between the USV and other dynamic obstacles… More > Graphic Abstract

    LSDA-APF: A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment

Displaying 1-10 on page 1 of 91. Per Page