Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (249)
  • Open Access

    ARTICLE

    Numerical Study of the Biomechanical Behavior of a 3D Printed Polymer Esophageal Stent in the Esophagus by BP Neural Network Algorithm

    Guilin Wu1,2, Shenghua Huang1, Tingting Liu3, Zhuoni Yang3, Yuesong Wu2, Guihong Wei1, Peng Yu1,*, Qilin Zhang4, Jun Feng4, Bo Zeng5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2709-2725, 2024, DOI:10.32604/cmes.2023.031399

    Abstract Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life and prognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice. However, esophageal stents of different types and parameters have varying adaptability and effectiveness for patients, and they need to be individually selected according to the patient’s specific situation. The purpose of this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3D printing technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer,… More >

  • Open Access

    ARTICLE

    The Conversion of Non-Dispersed Polymers into Low-Potassium Anti-Collapse Drilling Fluids

    Hao Hu1,2,3, Jian Guan4, Shanfa Tang1,2,3,*, Jialuo Rong1,2,3, Yuanpeng Cheng1,2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 325-335, 2024, DOI:10.32604/fdmp.2023.042055

    Abstract Different drilling fluid systems are designed according to mineral composition, lithology and wellbore stability of different strata. In the present study, the conversion of a non-dispersed polymer drilling fluid into a low potassium anti-collapsing drilling fluid is investigated. Since the two drilling fluids belong to completely different types, the key to this conversion is represented by new inhibitors, dispersants and water-loss agents by which a non-dispersed drilling fluid can be turned into a dispersed drilling fluid while ensuring wellbore stability and reasonable rheology (carrying sand—inhibiting cuttings dispersion). In particular, the (QYZ-1) inhibitors and (FSJSS-2) dispersants are used. The former can… More >

  • Open Access

    ARTICLE

    Research progress and prospects of nucleic acid isothermal amplification technology

    SHUHUI WU1,2,#, PING XU3,#, XIANGBIN XU2, SONG-BAI LIU1,2,*

    BIOCELL, Vol.47, No.11, pp. 2385-2395, 2023, DOI:10.32604/biocell.2023.029687

    Abstract Nucleic acid (DNA and RNA) detection and quantification methods play vital roles in molecular biology. With the development of molecular biology, isothermal amplification of DNA/RNA, as a new molecular biology technology, can be amplified under isothermal condition, it has the advantages of high sensitivity, high specificity, and high efficiency, and has been applied in various fields of biotechnology, including disease diagnosis, pathogen detection, food hygiene and safety detection and so on. This paper introduces the progress of isothermal amplification technology, including rolling circle amplification (RCA), nucleic acid sequence-dependent amplification (NASBA), strand displacement amplification (SDA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification… More >

  • Open Access

    ARTICLE

    Cross-Linking of Sago Starch with Furan and Bismaleimide via the Diels-Alder Reaction

    Henky Muljana*, Ivana Hasjem, Merianawati Sinatra, Dicky Joshua Pesireron, Michael Wilbert Puradisastra, Ryan Hartono, Kevin Yovan Hermanto, Tony Handoko

    Journal of Renewable Materials, Vol.11, No.12, pp. 4039-4060, 2023, DOI:10.32604/jrm.2023.031261

    Abstract This research paper describes the synthesis of thermo-reversible cross-linking of sago starch by grafting a furan pendant group (methyl 2-furoate) onto the starch backbone, followed by a Diels-Alder (DA) reaction of the furan functional group with 1,1′-(methylenedi-4,1-phenylene) bismaleimide (BM). The proof of principles was provided by FTIR and 1H-NMR analyses. The relevant FTIR peaks are the carbonyl peak (υ C=O sym) at 1721 cm−1 ; the two peaks appeared after DA cross-linking, i.e., at 1510 cm−1 (corresponding to υ CH=CH BM aromatic rings, stretching vibrations), and at 1173 cm−1 (assigned to cycloadduct (C-O-C, δ DA ring)) while the 1H-NMR result… More > Graphic Abstract

    Cross-Linking of Sago Starch with Furan and Bismaleimide via the Diels-Alder Reaction

  • Open Access

    VIEWPOINT

    Future of the current anticoronaviral agents: A viewpoint on the validation for the next COVIDs and pandemics

    AMGAD M. RABIE*

    BIOCELL, Vol.47, No.10, pp. 2133-2139, 2023, DOI:10.32604/biocell.2023.030057

    Abstract Despite the global decline in the severity of the coronavirus disease 2019 (COVID-19) cases, the disease still represents a major concern to the relevant scientific and medical communities. The primary concern of drug scientists, virologists, and other concerned specialists in this respect is to find ready-to-use suitable and potent anticoronaviral therapies that are broadly effective against the different species/strains of the coronaviruses in general, not only against the current and previous coronaviruses (e.g., the recently-appeared severe acute respiratory syndrome coronavirus 2 “SARS-CoV-2”), i.e., effective antiviral agents for treatment and/or prophylaxis of any coronaviral infections, including those of the coming ones… More > Graphic Abstract

    Future of the current anticoronaviral agents: A viewpoint on the validation for the next COVIDs and pandemics

  • Open Access

    PROCEEDINGS

    Giant Flexoelectric Effect of Polymeric Porous Composite and Its Applications

    Dongze Yan1, Jianxiang Wang2, Lihua Shao1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09357

    Abstract Non-uniform strains produce a localized break in the microscopic inverse symmetry of materials, which leads to the electromechanical coupling phenomenon known as flexoelectricity in all dielectric materials. However, the size-dependent flexoelectric effect typically only manifests at small scales. Creating a considerable flexoelectric output at the macroscopic scale remains a bottleneck. Micro- and nano-porous materials own a significant number of randomly distributed microscopic pores and ligamentous structures, which can deform non-uniformly under arbitrary forms of macroscopic loading. Moreover, since the small size effect of flexoelectricity, the entire flexoelectricity of the micro- and nano-porous materials will be much more significant than that… More >

  • Open Access

    PROCEEDINGS

    Molecular Dynamic Study on Entangled Structure of Polymer Chains’ Network under High Speed Loading Condition

    Isamu Riku1,*, Koji Mimura1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09070

    Abstract It is well known that the mechanical resistance of soft materials such as rubber and elastomer can be improved by cross-linkages or fillers, which will lead to a construction of entangled structure of polymer chains’ network. However, the correlation between the amount of cross-linkages or fillers with the toughness strength of the resultant material has not been clarified. Therefore, in this study, we at first construct a computational model for the resultant material with molecular dynamics method. Then, a series of simulations are performed for the resultant materials with different amount of cross-linkages or fillers under high speed loading condition.… More >

  • Open Access

    ARTICLE

    Nonlinear Analysis of Organic Polymer Solar Cells Using Differential Quadrature Technique with Distinct and Unique Shape Function

    Ola Ragb1, Mokhtar Mohamed2, Mohamed S. Matbuly1, Omer Civalek3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2193-2217, 2023, DOI:10.32604/cmes.2023.028992

    Abstract Four numerical schemes are introduced for the analysis of photocurrent transients in organic photovoltaic devices. The mathematical model for organic polymer solar cells contains a nonlinear diffusion–reaction partial differential equation system with electrostatic convection attached to a kinetic ordinary differential equation. To solve the problem, Polynomial-based differential quadrature, Sinc, and Discrete singular convolution are combined with block marching techniques. These schemes are employed to reduce the problem to a nonlinear algebraic system. The iterative quadrature technique is used to solve the reduced problem. The obtained results agreed with the previous exact one and the finite element method. Further, the effects… More > Graphic Abstract

    Nonlinear Analysis of Organic Polymer Solar Cells Using Differential Quadrature Technique with Distinct and Unique Shape Function

  • Open Access

    ARTICLE

    Effect of Multi-Hydroxyl Polymer-Treated MUF Resin on the Mechanical Properties of Particleboard Manufactured with Reed Straw

    Yuhui Huang1, Zhiyuan Yin1,2, Ming Liu1, Meng Li1, Yingfeng Zuo1, Yan Qing1, Yiqiang Wu1,*

    Journal of Renewable Materials, Vol.11, No.9, pp. 3417-3431, 2023, DOI:10.32604/jrm.2023.028511

    Abstract The poor bonding performance between aqueous adhesives represented by melamine-urea formaldehyde (MUF) resins and reed straw hinders their applications in the field of non-wood-based panels. Multi-hydroxyl polymers are highly reactive and are often used as crosslinkers. This study fabricated a resin with a strengthened cross-linked structure by combining a multi-hydroxyl polymer and MUF resin prepolymer. The reed particleboard was prepared by using this resin as an adhesive and reed stalk as the matrix. The results show that neighboring molecules combined to form C–O–C bonds that strengthened the cross-linked structure of the resin. In addition, the viscosity of the resin was… More >

  • Open Access

    ARTICLE

    PERFORMANCE OF ORTHOTROPIC ANNULAR FINS HAVING CONTACT RESISTANCE

    Harpreet Kaur Aasi, Vivek Kumar Gaba, Anil Kumar Tiwari, Shubhankar Bhowmick*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-6, 2017, DOI:10.5098/hmt.8.15

    Abstract Due to low density and low coefficient of thermal expansion, orthotropic materials, namely, the polymer matrix composites are finding their way in many of the engineering application. The present study investigates the performance of the orthotropic annular fin. The thermal conductivity along radial and axial direction is governed by the thermal conductivity ratio (K), which is an important parameter for orthotropic annular fin. The work then numerically examines in two dimensions, the thermal performance of the annular fin at different thermal conductivity ratio (K) for the rectangular profile using the finite difference method. Different convective heat transfer coefficient are considered… More >

Displaying 41-50 on page 5 of 249. Per Page