Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (36)
  • Open Access

    ARTICLE

    Fuzzy Multi-Criteria Decision Making for Solar Power Plant Location Selection

    Thai Hoang Tuyet Nhi1, Chia-Nan Wang1, Nguyen Van Thanh2,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4853-4865, 2022, DOI:10.32604/cmc.2022.026374

    Abstract Vietnam is one of Southeast Asian countries with a rapid GDP growth rate, ranging from 6.5% to 7% annually, leading to an average increase in energy demand of 11% per year. This demand creates many new opportunities in the energy industry, especially renewable energy, to ensure sustainable development in the future for the country with applications of solar energy growing at the present, and other opportunities to expand in the future. In Vietnam, thanks to favorable weather, climate, terrain characteristics and many preferential support policies, there are many great opportunities in the field of solar energy exploitation and application. Location… More >

  • Open Access

    ARTICLE

    A Genetic Algorithm for Optimizing Yaw Operation Control in Wind Power Plants

    Lisha Shang*, Yajuan Jia, Liming Zheng, Erna Shi, Min Sun

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 511-519, 2022, DOI:10.32604/fdmp.2022.017920

    Abstract A genetic algorithm is proposed to optimize the yaw control system used for the stable and efficient operation of turbines in wind power plants. In particular, the factors that produce yaw static deviation are analyzed. Then, the sought optimization method for the yaw static deviation of the wind turbine is implemented by using a lidar wind meter in the engine room in order to solve the low accuracy problem caused by yaw static deviation. It is shown that fuzzy control can overcome problematic factors such as the randomness of wind direction and track the change of wind direction accurately. Power… More >

  • Open Access

    ARTICLE

    Field Studies on the Removal Characteristics of Particulate Matter and SOx in Ultra-Low Emission Coal-Fired Power Plant

    Xu Zhao, Houzhang Tan, Fuxin Yang*, Shuanghui Deng

    Energy Engineering, Vol.119, No.1, pp. 49-62, 2022, DOI:10.32604/EE.2022.015622

    Abstract In order to reduce the environmental smog caused by coal combustion, air pollution control devices have been widely used in coal-fired power plants, especially of wet flue gas desulfurization (WFGD) and wet electrostatic precipitator (WESP). In this work, particulate matter with aerodynamic diameter less than 10 μm (PM10) and sulfur oxides (SOx) have been studied in a coal-fired power plant. The plant is equipped with selective catalytic reduction, electrostatic precipitator, WFGD, WESP. The results show that the PM10 removal efficiencies in WFGD and WESP are 54.34% and 50.39%, respectively, and the overall removal efficiency is 77.35%. WFGD and WESP have… More >

  • Open Access

    ARTICLE

    Intelligent Integrated Model for Improving Performance in Power Plants

    Ahmed Ali Ajmi1,2, Noor Shakir Mahmood1,2, Khairur Rijal Jamaludin1,*, Hayati Habibah Abdul Talib1, Shamsul Sarip1, Hazilah Mad Kaidi1

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5783-5801, 2022, DOI:10.32604/cmc.2022.021885

    Abstract Industry 4.0 is expected to play a crucial role in improving energy management and personnel performance in power plants. Poor performance problem in maintaining power plants is the result of both human errors, human factors and the poor implementation of automation in energy management. This problem can potentially be solved using artificial intelligence (AI) and an integrated management system (IMS). This article investigates the current challenges to improving personnel and energy management performance in power plants, identifies the critical success factors (CSFs) for an integrated intelligent framework, and develops an intelligent framework that enables power plants to improve performance. The… More >

  • Open Access

    Management of Schemes and Threat Prevention in ICS Partner Companies Security

    Sangdo Lee1, Jun-Ho Huh2,*

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3659-3684, 2021, DOI:10.32604/cmc.2021.015632

    Abstract An analysis of the recent major security incidents related to industrial control systems, revealed that most had been caused by company employees. Therefore, enterprise security management systems have been developed to focus on companies’ personnel. Nonetheless, several hacking incidents, involving major companies and public/financial institutions, were actually attempted by the cooperative firms or the outsourced manpower undertaking maintenance work. Specifically, institutions that operate industrial control systems (ICSs) associated with critical national infrastructures, such as traffic or energy, have contracted several cooperative firms. Nonetheless, ICT's importance is gradually increasing, due to outsourcing, and is the most vulnerable factor in security. This… More >

  • Open Access

    ARTICLE

    Uncertainties in the Mercury Mass Balance in a Coal-Based IGCC Power Plant (Puertollano, Spain)

    José María Esbrí*, Alba Martinez-Coronado, Sofía Rivera Jurado, Eva García-Noguero, Pablo Higueras

    Energy Engineering, Vol.118, No.4, pp. 1223-1235, 2021, DOI:10.32604/EE.2021.015781

    Abstract Mercury (Hg) is a global pollutant that is subject to strict regulations to reduce anthropogenic emissions. The production of energy represents an important activity that leads to Hg emissions into the atmosphere. Of all the systems used, IGCC plants are the most promising for reducing Hg emissions, since it is possible to remove Hg from syngas prior to combustion. The aim of the present work was to evaluate the presence of Hg in the main streams of an experimental IGCC plant (ELCOGAS, Puertollano) in order to quantify Hg emissions and investigate the possibility of reducing them. The main streams of… More >

  • Open Access

    ARTICLE

    CFD Simulation of a Bag Filter for a 200MW Power Plant

    Yukun Lv, Jiaxi Yang*, Jing Wang

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.6, pp. 1191-1202, 2020, DOI:10.32604/fdmp.2020.010302

    Abstract The combustion of pulverized coal inevitably produces dust and other harmful substances. For these reasons, the optimization of de-dusting procedure and equipments is an aspect of crucial importance towards the final goal of making this source of energy more sustainable. In the present work, the behaviour of a “bag filter” is simulated using Computational Fluid Dynamics (CFD). More specifically, three possible approaches are used, differing with respect to the level of fidelity and the partial utilization of empirical data. The outcome of these simulations is mutually compared and finally discussed critically in the light of available experimental results. More >

  • Open Access

    ARTICLE

    Time-Domain Protection for Transmission Lines Connected to Wind Power Plant based on Model Matching and Hausdorff Distance

    Hongchun Shu1,2, Xiaohan Jiang1,2,*, Pulin Cao2, Na An2, Xincui Tian2, Bo Yang2

    Energy Engineering, Vol.118, No.1, pp. 53-71, 2021, DOI:10.32604/EE.2020.012381

    Abstract The system impedance instability, high-order harmonics, and frequency offset are main fault characteristics of wind power system. Moreover, the measurement angle of faulty phase is affected by rotation speed frequency component, which causes traditional directional protections based on angle comparison between voltage and current to operate incorrectly. In this paper, a time-domain protection for connected to wind power plant based on model matching is proposed, which compares the calculated current and the measured current to identify internal faults and external faults. Under external faults, the calculated current and measured current waveform are quite similar because the protected transmission lines is… More >

  • Open Access

    ARTICLE

    The Elaboration of Flow Resistance Model for a Bag Filter Serving a 200 MW Power Plant

    Yukun Lv, Jiaxi Yang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.4, pp. 827-835, 2020, DOI:10.32604/fdmp.2020.010343

    Abstract On the basis of a macro flow resistance method and the Darcy Theory, a mathematical model is elaborated to characterize the flow resistance of a bag filter serving a coal-fired power plant. The development of the theoretical model is supported through acquisition of relevant data obtained by scanning the micro structure of the bag filter by means of an electron microscope. The influence of the running time and boiler load on the flow resistance and the impact of the flow resistance on the efficiency of the induced draft fan are analyzed by comparing the results of on-site operation tests. We… More >

  • Open Access

    ARTICLE

    Identification of Parameters in 2D-FEM of Valve Piping System within NPP Utilizing Seismic Response

    Ruiyuan Xue1, Shurong Yu1, *, Xiheng Zhang1

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 789-805, 2020, DOI:10.32604/cmc.2020.011340

    Abstract Nuclear power plants (NPP) contain plenty of valve piping systems (VPS’s) which are categorized into high anti-seismic grades. Tasks such as seismic qualification, health monitoring and damage diagnosis of VPS’s in its design and operation processes all depend on finite element method. However, in engineering practice, there is always deviations between the theoretical and the measured responses due to the inaccurate value of the structural parameters in the model. The structure parameters identification of VPS within NPP is still an unexplored domain to a large extent. In this paper, the initial 2Dfinite element model (FEM) for VPS with a DN80… More >

Displaying 21-30 on page 3 of 36. Per Page