Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    Thermodynamic Performance Analysis of Geothermal Power Plant Based on Organic Rankine Cycle (ORC) Using Mixture of Pure Working Fluids

    Abdul Sattar Laghari1, Mohammad Waqas Chandio1, Laveet Kumar2,*, Mamdouh El Haj Assad3

    Energy Engineering, Vol.121, No.8, pp. 2023-2038, 2024, DOI:10.32604/ee.2024.051082

    Abstract The selection of working fluid significantly impacts the geothermal ORC’s Efficiency. Using a mixture as a working fluid is a strategy to improve the output of geothermal ORC. In the current study, modelling and thermodynamic analysis of ORC, using geothermal as a heat source, is carried out at fixed operating conditions. The model is simulated in the Engineering Equation Solver (EES). An environment-friendly mixture of fluids, i.e., R245fa/R600a, with a suitable mole fraction, is used as the operating fluid. The mixture provided the most convenient results compared to the pure working fluid under fixed operating More >

  • Open Access

    ARTICLE

    Abnormal State Detection in Lithium-ion Battery Using Dynamic Frequency Memory and Correlation Attention LSTM Autoencoder

    Haoyi Zhong, Yongjiang Zhao, Chang Gyoon Lim*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1757-1781, 2024, DOI:10.32604/cmes.2024.049208

    Abstract This paper addresses the challenge of identifying abnormal states in Lithium-ion Battery (LiB) time series data. As the energy sector increasingly focuses on integrating distributed energy resources, Virtual Power Plants (VPP) have become a vital new framework for energy management. LiBs are key in this context, owing to their high-efficiency energy storage capabilities essential for VPP operations. However, LiBs are prone to various abnormal states like overcharging, over-discharging, and internal short circuits, which impede power transmission efficiency. Traditional methods for detecting such abnormalities in LiB are too broad and lack precision for the dynamic and… More >

  • Open Access

    ARTICLE

    Optimizing Two-Phase Flow Heat Transfer: DCS Hybrid Modeling and Automation in Coal-Fired Power Plant Boilers

    Ming Yan1, Caijiang Lu2,*, Pan Shi1,*, Meiling Zhang3, Jiawei Zhang1, Liang Wang1

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 615-631, 2024, DOI:10.32604/fhmt.2024.048333

    Abstract In response to escalating challenges in energy conservation and emission reduction, this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired boilers. Utilizing a fusion of hybrid modeling and automation technologies, we develop soft measurement models for key combustion parameters, such as the net calorific value of coal, flue gas oxygen content, and fly ash carbon content, within the Distributed Control System (DCS). Validated with performance test data, these models exhibit controlled root mean square error (RMSE) and maximum absolute error (MAXE) values, both within the… More > Graphic Abstract

    Optimizing Two-Phase Flow Heat Transfer: DCS Hybrid Modeling and Automation in Coal-Fired Power Plant Boilers

  • Open Access

    ARTICLE

    Low-Carbon Dispatch of an Integrated Energy System Considering Confidence Intervals for Renewable Energy Generation

    Yan Shi1, Wenjie Li1, Gongbo Fan2,*, Luxi Zhang1, Fengjiu Yang1

    Energy Engineering, Vol.121, No.2, pp. 461-482, 2024, DOI:10.32604/ee.2023.043835

    Abstract Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation, this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side. A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation, with the overarching goal of optimizing the system for low-carbon operation. To begin with, an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation… More >

  • Open Access

    ARTICLE

    Solar Power Plant Network Packet-Based Anomaly Detection System for Cybersecurity

    Ju Hyeon Lee1, Jiho Shin2, Jung Taek Seo3,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 757-779, 2023, DOI:10.32604/cmc.2023.039461

    Abstract As energy-related problems continue to emerge, the need for stable energy supplies and issues regarding both environmental and safety require urgent consideration. Renewable energy is becoming increasingly important, with solar power accounting for the most significant proportion of renewables. As the scale and importance of solar energy have increased, cyber threats against solar power plants have also increased. So, we need an anomaly detection system that effectively detects cyber threats to solar power plants. However, as mentioned earlier, the existing solar power plant anomaly detection system monitors only operating information such as power generation, making… More >

  • Open Access

    ARTICLE

    Off-Design Simulation of a CSP Power Plant Integrated with a Waste Heat Recovery System

    T. E. Boukelia1,2,*, A. Bourouis1, M. E. Abdesselem3, M. S. Mecibah3

    Energy Engineering, Vol.120, No.11, pp. 2449-2467, 2023, DOI:10.32604/ee.2023.030183

    Abstract Concentrating Solar Power (CSP) plants offer a promising way to generate low-emission energy. However, these plants face challenges such as reduced sunlight during winter and cloudy days, despite being located in high solar radiation areas. Furthermore, their dispatch capacities and yields can be affected by high electricity consumption, particularly at night. The present work aims to develop an off-design model that evaluates the hourly and annual performances of a parabolic trough power plant (PTPP) equipped with a waste heat recovery system. The study aims to compare the performances of this new layout with those of… More >

  • Open Access

    ARTICLE

    Electricity-Carbon Interactive Optimal Dispatch of Multi-Virtual Power Plant Considering Integrated Demand Response

    Shiwei Su1,2, Guangyong Hu2, Xianghua Li3, Xin Li2, Wei Xiong2,*

    Energy Engineering, Vol.120, No.10, pp. 2343-2368, 2023, DOI:10.32604/ee.2023.028500

    Abstract As new power systems and dual carbon policies develop, virtual power plant cluster (VPPC) provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems. To solve the coordinated optimal operation and low-carbon economic operation problem in multi-virtual power plant, a multi-virtual power plant (VPP) electricity-carbon interaction optimal scheduling model considering integrated demand response (IDR) is proposed. Firstly, a multi-VPP electricity-carbon interaction framework is established. The interaction of electric energy and carbon quotas can realize energy complementarity, reduce energy waste and promote low-carbon operation. Secondly, in order to coordinate the… More > Graphic Abstract

    Electricity-Carbon Interactive Optimal Dispatch of Multi-Virtual Power Plant Considering Integrated Demand Response

  • Open Access

    REVIEW

    Evaporative Cooling Applied in Thermal Power Plants: A Review of the State-of-the-Art and Typical Case Studies

    Tiantian Liu1, Huimin Pang1, Suoying He1,*, Bin Zhao2, Zhiyu Zhang1, Jucheng Wang3, Zhilan Liu4, Xiang Huang5, Yuetao Shi1, Ming Gao1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2229-2266, 2023, DOI:10.32604/fdmp.2023.027239

    Abstract A review is conducted about the application of the evaporative cooling technology in thermal power plants. Different case studies are considered, namely, evaporative air conditioners, evaporative cooling in direct air-cooled systems, gas turbine inlet cooling, wet cooling towers, and hybrid cooling towers with a crosswind effect. Some effort is provided to describe the advantages related to direct evaporative cooling when it is applied in thermal power plants and illustrate the research gaps, which have not been filled yet. In particular, typical case studies are intentionally used to compare the cooling performances when direct evaporative cooling… More > Graphic Abstract

    Evaporative Cooling Applied in Thermal Power Plants: A Review of the State-of-the-Art and Typical Case Studies

  • Open Access

    ARTICLE

    An Improvement in Power Quality and By-Product of the Run-Off River Micro Hydro Power Plant

    Ignatius Riyadi Mardiyanto1, Jangkung Raharjo2,*, Sri Utami1, Wahyu Budi Mursanto1, Agoeng Hardjatmo Rahardjo1

    Energy Engineering, Vol.120, No.6, pp. 1295-1305, 2023, DOI:10.32604/ee.2023.027756

    Abstract Utilization of Micro Hydro Power Plant at the Gunung Halu case study type run-off the river is a household use only in the afternoon, around 5 pm until bedtime at about 10 pm. Therefore, more than 75% of the energy is lost. This case study lost power which can be used as a by-product, such as for drying coffee beans. In this case study, a design was carried out to obtain by-products and improve power quality in the electrical system. In addition, they complain about the poor quality of power controlled by frequency using Triac-Based More > Graphic Abstract

    An Improvement in Power Quality and By-Product of the Run-Off River Micro Hydro Power Plant

  • Open Access

    ARTICLE

    Peer-to-Peer Energy Trading Method of Multi-Virtual Power Plants Based on Non-Cooperative Game

    Jingjing Bai*, Hongyi Zhou, Zheng Xu, Yu Zhong

    Energy Engineering, Vol.120, No.5, pp. 1163-1183, 2023, DOI:10.32604/ee.2023.025553

    Abstract The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants. Besides, the game relationship between transaction subjects needs to be further explored. This paper proposes a Peer-to-Peer energy trading method for multi-virtual power plants based on a non-cooperative game. Firstly, a coordinated control model of public buildings is incorporated into the scheduling framework of the virtual power plant, considering the energy consumption characteristics of users. Secondly, the utility functions of multiple virtual power plants are analyzed, and a non-cooperative game model is established to explore the… More >

Displaying 1-10 on page 1 of 39. Per Page