Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    Optimal Operation of Virtual Power Plants Based on Revenue Distribution and Risk Contribution

    Heping Qi, Wenyao Sun*, Yi Zhao, Xiaoyi Qian, Xingyu Jiang

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069603 - 27 December 2025

    Abstract Virtual power plant (VPP) integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions, promote the consumption of renewable energy, and improve economic efficiency. In this paper, aiming at the uncertainty of distributed wind power and photovoltaic output, considering the coupling relationship between power, carbon trading, and green card market, the optimal operation model and bidding scheme of VPP in spot market, carbon trading market, and green card market are established. On this basis, through the Shapley value and independent risk contribution theory in cooperative game theory, the quantitative… More > Graphic Abstract

    Optimal Operation of Virtual Power Plants Based on Revenue Distribution and Risk Contribution

  • Open Access

    ARTICLE

    Intelligent Scheduling of Virtual Power Plants Based on Deep Reinforcement Learning

    Shaowei He, Wenchao Cui*, Gang Li, Hairun Xu, Xiang Chen, Yu Tai

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 861-886, 2025, DOI:10.32604/cmc.2025.063979 - 09 June 2025

    Abstract The Virtual Power Plant (VPP), as an innovative power management architecture, achieves flexible dispatch and resource optimization of power systems by integrating distributed energy resources. However, due to significant differences in operational costs and flexibility of various types of generation resources, as well as the volatility and uncertainty of renewable energy sources (such as wind and solar power) and the complex variability of load demand, the scheduling optimization of virtual power plants has become a critical issue that needs to be addressed. To solve this, this paper proposes an intelligent scheduling method for virtual power… More >

  • Open Access

    ARTICLE

    Hybrid Memory-Enhanced Autoencoder with Adversarial Training for Anomaly Detection in Virtual Power Plants

    Yuqiao Liu1, Chen Pan1, YeonJae Oh2,*, Chang Gyoon Lim1,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4593-4629, 2025, DOI:10.32604/cmc.2025.061196 - 06 March 2025

    Abstract Virtual Power Plants (VPPs) are integral to modern energy systems, providing stability and reliability in the face of the inherent complexities and fluctuations of solar power data. Traditional anomaly detection methodologies often need to adequately handle these fluctuations from solar radiation and ambient temperature variations. We introduce the Memory-Enhanced Autoencoder with Adversarial Training (MemAAE) model to overcome these limitations, designed explicitly for robust anomaly detection in VPP environments. The MemAAE model integrates three principal components: an LSTM-based autoencoder that effectively captures temporal dynamics to distinguish between normal and anomalous behaviors, an adversarial training module that… More >

  • Open Access

    ARTICLE

    A Combined Method of Temporal Convolutional Mechanism and Wavelet Decomposition for State Estimation of Photovoltaic Power Plants

    Shaoxiong Wu1, Ruoxin Li1, Xiaofeng Tao1, Hailong Wu1,*, Ping Miao1, Yang Lu1, Yanyan Lu1, Qi Liu2, Li Pan2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3063-3077, 2024, DOI:10.32604/cmc.2024.055381 - 18 November 2024

    Abstract Time series prediction has always been an important problem in the field of machine learning. Among them, power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies. Traditional power load forecasting often has poor feature extraction performance for long time series. In this paper, a new deep learning framework Residual Stacked Temporal Long Short-Term Memory (RST-LSTM) is proposed, which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences. The network framework of RST-LSTM consists of two More >

  • Open Access

    ARTICLE

    Abnormal State Detection in Lithium-ion Battery Using Dynamic Frequency Memory and Correlation Attention LSTM Autoencoder

    Haoyi Zhong, Yongjiang Zhao, Chang Gyoon Lim*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1757-1781, 2024, DOI:10.32604/cmes.2024.049208 - 20 May 2024

    Abstract This paper addresses the challenge of identifying abnormal states in Lithium-ion Battery (LiB) time series data. As the energy sector increasingly focuses on integrating distributed energy resources, Virtual Power Plants (VPP) have become a vital new framework for energy management. LiBs are key in this context, owing to their high-efficiency energy storage capabilities essential for VPP operations. However, LiBs are prone to various abnormal states like overcharging, over-discharging, and internal short circuits, which impede power transmission efficiency. Traditional methods for detecting such abnormalities in LiB are too broad and lack precision for the dynamic and… More >

  • Open Access

    REVIEW

    Evaporative Cooling Applied in Thermal Power Plants: A Review of the State-of-the-Art and Typical Case Studies

    Tiantian Liu1, Huimin Pang1, Suoying He1,*, Bin Zhao2, Zhiyu Zhang1, Jucheng Wang3, Zhilan Liu4, Xiang Huang5, Yuetao Shi1, Ming Gao1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2229-2266, 2023, DOI:10.32604/fdmp.2023.027239 - 16 May 2023

    Abstract A review is conducted about the application of the evaporative cooling technology in thermal power plants. Different case studies are considered, namely, evaporative air conditioners, evaporative cooling in direct air-cooled systems, gas turbine inlet cooling, wet cooling towers, and hybrid cooling towers with a crosswind effect. Some effort is provided to describe the advantages related to direct evaporative cooling when it is applied in thermal power plants and illustrate the research gaps, which have not been filled yet. In particular, typical case studies are intentionally used to compare the cooling performances when direct evaporative cooling… More > Graphic Abstract

    Evaporative Cooling Applied in Thermal Power Plants: A Review of the State-of-the-Art and Typical Case Studies

  • Open Access

    ARTICLE

    Peer-to-Peer Energy Trading Method of Multi-Virtual Power Plants Based on Non-Cooperative Game

    Jingjing Bai*, Hongyi Zhou, Zheng Xu, Yu Zhong

    Energy Engineering, Vol.120, No.5, pp. 1163-1183, 2023, DOI:10.32604/ee.2023.025553 - 20 February 2023

    Abstract The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants. Besides, the game relationship between transaction subjects needs to be further explored. This paper proposes a Peer-to-Peer energy trading method for multi-virtual power plants based on a non-cooperative game. Firstly, a coordinated control model of public buildings is incorporated into the scheduling framework of the virtual power plant, considering the energy consumption characteristics of users. Secondly, the utility functions of multiple virtual power plants are analyzed, and a non-cooperative game model is established to explore the… More >

  • Open Access

    ARTICLE

    Simulation of Vertical Solar Power Plants with Different Turbine Blades

    Yuxing Yang, Peng Zhang*, Meng Lv

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1397-1409, 2023, DOI:10.32604/fdmp.2023.024916 - 30 January 2023

    Abstract The performances of turbine blades have a significant impact on the energy conversion efficiency of vertical solar power plants. In the present study, such a relationship is assessed by considering two kinds of airfoil blades, designed by using the Wilson theory. In particular, numerical simulations are conducted using the SST K − ω model and assuming a wind speed of 3–6 m/s and seven or eight blades. The two airfoils are the NACA63121 (with a larger chord length) and the AMES63212; It is shown that the torsion angle of the former is smaller, and its wind drag More > Graphic Abstract

    Simulation of Vertical Solar Power Plants with Different Turbine Blades

  • Open Access

    ARTICLE

    Development of Energy Management System for Micro Grid Operation

    S. Jayaprakash1,*, B. Gopi2, Murugananth Gopal Raj3, S. Sujith4, S. Deepa5, S. Swapna6

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2537-2551, 2023, DOI:10.32604/csse.2023.032038 - 21 December 2022

    Abstract The introduction of several small and large-scale industries, malls, shopping complexes, and domestic applications has significantly increased energy consumption. The aim of the work is to simulate a technically viable and economically optimum hybrid power system for residential buildings. The proposed micro-grid model includes four power generators: solar power, wind power, Electricity Board (EB) source, and a Diesel Generator (DG) set, with solar and wind power performing as major sources and the EB supply and DG set serving as backup sources. The core issue in direct current to alternate current conversion is harmonics distortion, a… More >

  • Open Access

    ARTICLE

    AN ULTIMATE SOLUTION TO PHASING OUT FOSSIL FUELS – PART II: AIR-WATER THERMAL POWER PLANTS FOR UTILITY-SCALE POWER PRODUCTION AT LOW TEMPERATURES

    Yiding Cao

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-16, 2022, DOI:10.5098/hmt.19.2

    Abstract This paper introduces a novel air-water thermal power plant working at low temperatures and employing hot water as a heat-supply fluid to produce utility-scale power with high second-law efficiency. The air-water power plant uses both air and water as working fluids and employs a direct-contact mass and heat transfer packing to facilitate latent heat (in terms of vapor) and sensible heat transfer from the hot water to moist air for expansion in a gas turbine to produce power. A cycle analysis indicates that with a heat source temperature of around 100o C, the power plant… More >

Displaying 1-10 on page 1 of 16. Per Page