Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    REVIEW

    Evaporative Cooling Applied in Thermal Power Plants: A Review of the State-of-the-Art and Typical Case Studies

    Tiantian Liu1, Huimin Pang1, Suoying He1,*, Bin Zhao2, Zhiyu Zhang1, Jucheng Wang3, Zhilan Liu4, Xiang Huang5, Yuetao Shi1, Ming Gao1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2229-2266, 2023, DOI:10.32604/fdmp.2023.027239

    Abstract A review is conducted about the application of the evaporative cooling technology in thermal power plants. Different case studies are considered, namely, evaporative air conditioners, evaporative cooling in direct air-cooled systems, gas turbine inlet cooling, wet cooling towers, and hybrid cooling towers with a crosswind effect. Some effort is provided to describe the advantages related to direct evaporative cooling when it is applied in thermal power plants and illustrate the research gaps, which have not been filled yet. In particular, typical case studies are intentionally used to compare the cooling performances when direct evaporative cooling is implemented in different types… More > Graphic Abstract

    Evaporative Cooling Applied in Thermal Power Plants: A Review of the State-of-the-Art and Typical Case Studies

  • Open Access

    ARTICLE

    AN ULTIMATE SOLUTION TO PHASING OUT FOSSIL FUELS – PART II: AIR-WATER THERMAL POWER PLANTS FOR UTILITY-SCALE POWER PRODUCTION AT LOW TEMPERATURES

    Yiding Cao

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-16, 2022, DOI:10.5098/hmt.19.2

    Abstract This paper introduces a novel air-water thermal power plant working at low temperatures and employing hot water as a heat-supply fluid to produce utility-scale power with high second-law efficiency. The air-water power plant uses both air and water as working fluids and employs a direct-contact mass and heat transfer packing to facilitate latent heat (in terms of vapor) and sensible heat transfer from the hot water to moist air for expansion in a gas turbine to produce power. A cycle analysis indicates that with a heat source temperature of around 100o C, the power plant could achieve a power capacity… More >

  • Open Access

    ARTICLE

    Peer-to-Peer Energy Trading Method of Multi-Virtual Power Plants Based on Non-Cooperative Game

    Jingjing Bai*, Hongyi Zhou, Zheng Xu, Yu Zhong

    Energy Engineering, Vol.120, No.5, pp. 1163-1183, 2023, DOI:10.32604/ee.2023.025553

    Abstract The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants. Besides, the game relationship between transaction subjects needs to be further explored. This paper proposes a Peer-to-Peer energy trading method for multi-virtual power plants based on a non-cooperative game. Firstly, a coordinated control model of public buildings is incorporated into the scheduling framework of the virtual power plant, considering the energy consumption characteristics of users. Secondly, the utility functions of multiple virtual power plants are analyzed, and a non-cooperative game model is established to explore the game relationship between electricity sellers… More >

  • Open Access

    ARTICLE

    Simulation of Vertical Solar Power Plants with Different Turbine Blades

    Yuxing Yang, Peng Zhang*, Meng Lv

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1397-1409, 2023, DOI:10.32604/fdmp.2023.024916

    Abstract The performances of turbine blades have a significant impact on the energy conversion efficiency of vertical solar power plants. In the present study, such a relationship is assessed by considering two kinds of airfoil blades, designed by using the Wilson theory. In particular, numerical simulations are conducted using the SST K − ω model and assuming a wind speed of 3–6 m/s and seven or eight blades. The two airfoils are the NACA63121 (with a larger chord length) and the AMES63212; It is shown that the torsion angle of the former is smaller, and its wind drag ratio is larger; furthermore,… More > Graphic Abstract

    Simulation of Vertical Solar Power Plants with Different Turbine Blades

  • Open Access

    ARTICLE

    Development of Energy Management System for Micro Grid Operation

    S. Jayaprakash1,*, B. Gopi2, Murugananth Gopal Raj3, S. Sujith4, S. Deepa5, S. Swapna6

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2537-2551, 2023, DOI:10.32604/csse.2023.032038

    Abstract The introduction of several small and large-scale industries, malls, shopping complexes, and domestic applications has significantly increased energy consumption. The aim of the work is to simulate a technically viable and economically optimum hybrid power system for residential buildings. The proposed micro-grid model includes four power generators: solar power, wind power, Electricity Board (EB) source, and a Diesel Generator (DG) set, with solar and wind power performing as major sources and the EB supply and DG set serving as backup sources. The core issue in direct current to alternate current conversion is harmonics distortion, a five-stage multilevel inverter is employed… More >

  • Open Access

    ARTICLE

    Novel Approach to Energy Management via Performance Shaping Factors in Power Plants

    Ahmed Ali Ajmi1,2, Noor Shakir Mahmood1,2, Khairur Rijal Jamaludin1,*, Hayati Habibah Abdul Talib1, Shamsul Sarip1, Hazilah Mad Kaidi1

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5025-5039, 2022, DOI:10.32604/cmc.2022.031239

    Abstract The literature that a lack of integration between the performance shaping factors (PSFs) and the energy management performance (EMP) is one of the critical problems that prevent performance improvement and reduces the power plant’s efficiency. To solve this problem, this article aims to achieve two main objectives: (1) Systematically investigate and identify the critical success factors (CSFs) for integration with PSFs and EMP; (2) Develop a novel modelling approach to predict the performance of power plants based on innovative integrated strategies. The research methodology is grounded on the theoretical and practical approach to improving performance. The Newcastle Ottawa Scale (NOS)… More >

  • Open Access

    ARTICLE

    Optimal Intelligence Planning of Wind Power Plants and Power System Storage Devices in Power Station Unit Commitment Based

    Yuchen Hao*, Dawei Su, Zhen Lei

    Energy Engineering, Vol.119, No.5, pp. 2081-2104, 2022, DOI:10.32604/ee.2022.021342

    Abstract Renewable energy sources (RES) such as wind turbines (WT) and solar cells have attracted the attention of power system operators and users alike, thanks to their lack of environmental pollution, independence of fossil fuels, and meager marginal costs. With the introduction of RES, challenges have faced the unit commitment (UC) problem as a traditional power system optimization problem aiming to minimize total costs by optimally determining units’ inputs and outputs, and specifying the optimal generation of each unit. The output power of RES such as WT and solar cells depends on natural factors such as wind speed and solar irradiation… More >

  • Open Access

    ARTICLE

    A Genetic Algorithm for Optimizing Yaw Operation Control in Wind Power Plants

    Lisha Shang*, Yajuan Jia, Liming Zheng, Erna Shi, Min Sun

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 511-519, 2022, DOI:10.32604/fdmp.2022.017920

    Abstract A genetic algorithm is proposed to optimize the yaw control system used for the stable and efficient operation of turbines in wind power plants. In particular, the factors that produce yaw static deviation are analyzed. Then, the sought optimization method for the yaw static deviation of the wind turbine is implemented by using a lidar wind meter in the engine room in order to solve the low accuracy problem caused by yaw static deviation. It is shown that fuzzy control can overcome problematic factors such as the randomness of wind direction and track the change of wind direction accurately. Power… More >

  • Open Access

    ARTICLE

    Intelligent Integrated Model for Improving Performance in Power Plants

    Ahmed Ali Ajmi1,2, Noor Shakir Mahmood1,2, Khairur Rijal Jamaludin1,*, Hayati Habibah Abdul Talib1, Shamsul Sarip1, Hazilah Mad Kaidi1

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5783-5801, 2022, DOI:10.32604/cmc.2022.021885

    Abstract Industry 4.0 is expected to play a crucial role in improving energy management and personnel performance in power plants. Poor performance problem in maintaining power plants is the result of both human errors, human factors and the poor implementation of automation in energy management. This problem can potentially be solved using artificial intelligence (AI) and an integrated management system (IMS). This article investigates the current challenges to improving personnel and energy management performance in power plants, identifies the critical success factors (CSFs) for an integrated intelligent framework, and develops an intelligent framework that enables power plants to improve performance. The… More >

  • Open Access

    ARTICLE

    Integrated Condition Monitoring of Large Captive Power Plants and Aluminum Smelters

    J.K. Mohanty1, A. Adarsh2, P.R. Dash1, K. Parida1, P.K. Pradhan1,*

    Sound & Vibration, Vol.53, No.5, pp. 223-235, 2019, DOI:10.32604/sv.2019.07737

    Abstract Condition monitoring is implementation of the advanced diagnostic techniques to reduce downtime and to increase the efficiency and reliability. The research is for determining the usage of advanced techniques like Vibration analysis, Oil analysis and Thermography to diagnose ensuing problems of the Plant and Machinery at an early stage and plan to take corrective and preventive actions to eliminate the forthcoming breakdown and enhancing the reliability of the system. Nowadays, the most of the industries have adopted the condition monitoring techniques as a part of support system to the basic maintenance strategies. Major condition monitoring technique they follow is Vibration… More >

Displaying 1-10 on page 1 of 11. Per Page