Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (839)
  • Open Access

    ABSTRACT

    Effects of Tangent Operators on Prediction Accuracy of Meso-mechanical Constitutive Model of Elasto-plastic Composites

    Sujuan Guo, Guozheng Kang, Juan Zhang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.4, pp. 121-122, 2011, DOI:10.3970/icces.2011.018.121

    Abstract With a newly developed homogenization cyclic constitutive model of particle reinforced metal matrix composites (Guo et al., 2011), the effects of tangent operators, i.e., continuum and algorithmic tangent operators [defined by Doghri and Ouaar (2003)] on the accuracy of the developed meso-mechanical constitutive model to predict the monotonic tensile and uniaxial ratchetting deformation of SiCP/6061Al composites were investigated in this work. The predicted results were obtained by the developed model with the choices of different tangent operators and various magnitudes of loading increments. Some useful accuracy comparison and error analysis on the predicted results were conducted. It is shown that:… More >

  • Open Access

    ABSTRACT

    A study on simple and accurate prediction method for ultimate hull girder strength calculation

    Dong Hee Park, Do Kyun Kim, Han Byul Kim, Jung Kwan Seo, Bong JuKim, Jeom Kee Paik, Satya N. Atluri

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.2, pp. 59-60, 2011, DOI:10.3970/icces.2011.019.059

    Abstract The objective of this paper is to develop a simple and accurate prediction method for the ultimate strength calculations of ship hulls subject to vertical bending moments. The method is based on a credible bending stress distribution over the hull cross-section presumed at the ultimate limit state. The accuracy of this method is demonstrated through comparison with computations obtained using more refined methods, such as nonlinear finite element method, intelligent super-size finite element method, and idealized structural unit method. Statistical analysis of the hull girder ultimate strength based on comparisons among the various computations is carried out in terms of… More >

  • Open Access

    ABSTRACT

    A Reduced Order Model for the Fast Predictions of Reactivity and Neutron Distributions within Reactor Cores

    Andrew Buchan1, Simon Jewer2, Ionel Michael Navon3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.4, pp. 179-179, 2019, DOI:10.32604/icces.2019.05396

    Abstract A new Reduced Order Model (ROM) is developed for solving the neutron eigenvalue problem for the fast and accurate prediction and simulation of the neutron flux within light water reactor cores. The method of Proper Orthogonal Decomposition is employed to form the ROM which uses snapshots obtained from a full order model based on the finite element discretisation of the spatial dependence of the multi-group neutron diffusion equation. We detail how the temperature variation and control rod adjustments can be efficiently integrated into the model and their influence then accurately predicted within the model's solution. This is particularly important as… More >

  • Open Access

    ABSTRACT

    Prediction Model for Weld Hydrogen Cracking in High Strength Steel Weld

    Nobuyuki Ishikawa1,*, Yuya Sato1, A. Toshimitsu Yokobori Jr.2, Tadashi Kasuya3, Satoshi Minamoto4, Takehiro Endo3, Manabu Enoki3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 138-138, 2019, DOI:10.32604/icces.2019.05518

    Abstract Prediction model for weld hydrogen cracking (so called cold cracking) in high strength steel weld was developed by a coupled thermo-elastic-plastic and hydrogen diffusion analysis in the y-grooved weld joint. Critical conditions of cracking was given as the function of principal stress and accumulated hydrogen concentration in the root region where the cracking occurs. In order to clarify the critical conditions of cold cracking, y-grooved cold cracking tests were first conducted using the steel plate with tensile strength level of 780MPa. Plate thickness of the plates were 25 mm and 50 mm. Hydrogen concentration in the weld metal was changed… More >

  • Open Access

    ABSTRACT

    Prediction Models Generation by Machine Learning for Structural Materials Performance by Utilizing the Mi System

    Satoshi Minamoto*, Takuya Kadohira, Kaita Ito, Makoto Watanabe, Masahiko Demura

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 136-136, 2019, DOI:10.32604/icces.2019.05447

    Abstract The Materials Integration (MI) System is a domestically developed system in the “Cross-ministerial Strategic Innovation Promotion Program” to analyze structural materials performance. The performance on structural materials having complicated inputs/outputs would be solved with the combination of different scientific programs or data from experiment. One of the merits of constructing a combined model (here we call workflow) is that calculations are performed and the data would be stored in the system automatically.
    Furthermore, we developed a web application (“MIREA”: MI REgression Analyzer) that enables us to build high versatile prediction models based on machine learning techniques by using the… More >

  • Open Access

    ABSTRACT

    Connection and Execution of Prediction Modules Using the MI Workflow System

    Kaita Ito*, Satoshi Minamoto, Takuya Kadohira, Makoto Watanabe, Masahiko Demura

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 134-134, 2019, DOI:10.32604/icces.2019.05440

    Abstract In the Materials Integration (MI) system, workflow designers and players are implemented as ones of the core subsystems. When the user wants to predict a certain material parameter by using the MI system, the user selects a prediction module in the workflow designer that can output the objective parameter. If the all required input parameters of the prediction module are not given directly, further modules can be connected.
    Each input and output parameters of the prediction module on the MI system is directly associated with one term of material science and engineering. It is not defined as a specific… More >

  • Open Access

    ABSTRACT

    Data Assimilation for Grain Growth Prediction via Multi-Phase-Field Models

    Hiromichi Nagao1,2,*, Shin-ichi Ito1,2, Tadashi Kasuya3, Junya Inoue4,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 127-127, 2019, DOI:10.32604/icces.2019.05384

    Abstract Data assimilation (DA) is a computational technique to integrate numerical simulation models and observational/experimental data based on Bayesian statistics. DA is accepted as an essential methodology for the modern weather forecasting, and is applied to various fields of science including structural materials science. We propose a DA methodology to evaluate unobservable parameters involved in multi-phase-field models with the aim of accurately predicting the observed grain growth, such as in metals and alloys. This approach integrates models and a set of observational image data of grain structures. Since the set of image data is not a time series, directly applying conventional… More >

  • Open Access

    ABSTRACT

    Machine Learning Prediction of Creep Rupture Time for Steels

    Masahiko Demura1,*, Junya Sakurai1,2, Masayoshi Yamazaki1, Junya Inoue1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 123-123, 2019, DOI:10.32604/icces.2019.05303

    Abstract Creep is a complicated and time-dependent phenomenon, which is affected by the initial state and the degradation of microstructures. It is thus considered that the information about the microstructure is essential to predict the creep rupture time. On the other hand, there is a strong, practical need for the prediction without the investigation of microstructures nor the disclosure of the detailed process that should control the initial microstructures. In this study, we examined how modern machine learning technique can help to predict the creep rupture time in heat-resistant ferrite-type steels without the direct information about the microstructures and the process… More >

  • Open Access

    ABSTRACT

    Numerical prediction and sequential process optimization in sheet forming based on genetic algorithm

    Schmidt1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.2, pp. 65-74, 2010, DOI:10.3970/icces.2010.015.065

    Abstract Genetic algorithm is an emerging technique used in engineering design activities to find an optimized solution which satisfy a number of design goals. Non-linear direct method of goal search use successive linearization techniques, which are sensitive to the chosen starting solution and quality of the objective function. The proposed technique can solve programming problems having non-convex regions, which are usually avoided in classical optimization problems. The efficacy of the proposed novel method is demonstrated by solving a number of test problems. The results suggest that the proposed method is effective and represents a practical tool for solving sheet forming problems. More >

  • Open Access

    ABSTRACT

    A meshless model for rapid prediction of indoor contaminant dispersion

    Darrell W. Pepper1, Xiuling Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.13, No.1, pp. 15-22, 2009, DOI:10.3970/icces.2009.013.015

    Abstract A meshless method for simulating indoor contaminant dispersion within buildings and rooms has been developed. The approach utilizes the advantages of the meshless method by distributing collocation points and different order radial basis functions according to the computational domain and evolving numerical solution. The numerical scheme yields fast convergence and high accuracy necessary for providing quick assessments of contamination transport within enclosures. More >

Displaying 741-750 on page 75 of 839. Per Page