Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (831)
  • Open Access

    ARTICLE

    Prediction of High-frequency Vibro-acoustic Coupling in Anechoic Chamber Using Energy Finite Element Method and Energy Boundary Element Method

    Miaoxia Xie1, Yueming Li1, Hualing Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.1, pp. 65-78, 2012, DOI:10.3970/cmes.2012.085.065

    Abstract Energy finite element method(EFEM) is a promising method to solve high-frequency vibro-acoustic problem. Energy boundary element method (EBEM) is an effective way to compute high-frequency sound radiation in the unbounded medium. Vibro-acoustic coupling of cavity structure in anechoic chamber includes both the interior acoustic field and unbounded exterior acoustic field. In order to predict this kind of high-frequency vibro-acoustic coupling problem in anechoic chamber, an approach combined EFEM and EBEM is developed in this paper. As a numerical example, the approach is applied to solve the high-frequency vibro-acoustic coupling response of a cubic cavity structure excited by a point sound… More >

  • Open Access

    ARTICLE

    Gauss Process Based Approach for Application on Landslide Displacement Analysis and Prediction

    Zaobao Liu1,2, Weiya Xu1, Jianfu Shao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.2, pp. 99-122, 2012, DOI:10.3970/cmes.2012.084.099

    Abstract In this paper, the Gauss process is proposed for application on landslide displacement analysis and prediction with dynamic crossing validation. The prediction problem using noisy observations is first introduced. Then the Gauss process method is proposed for modeling non-stationary series of landslide displacements based on its ability to model noisy data. The monitoring displacement series of the New Wolong Temple Landslide is comparatively studied with other methods as an instance to implement the strategy of the Gauss process for predicting landslide displacement. The dynamic crossing validation method is adopted to manage the displacement series so as to give more precise… More >

  • Open Access

    ARTICLE

    Predictions of Lid-Driven Flow in a Two-Dimensional Irregular Cavity: a Numerical Study

    Bruno Manoel Pasquim1, Viviana Cocco Mariani1

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.1, pp. 63-82, 2011, DOI:10.3970/cmes.2011.079.063

    Abstract The main aim of this study was to evaluate the capacity of a Eulerian-Lagrangian methodology (ELAFINT) to accurately deal with incompressible viscous steady flow in a domain with corners and curved boundaries. Thus, a two-dimensional lid-driven cavity with an irregular bottom was selected. The equations that govern the flow are discretized using the finite-volume method with a Cartesian grid. The evolution of the velocity fields, stream function and vorticity in the irregular cavity when the Reynolds number increases from 500 to 6000 is captured by the method under investigation. The results show that with an increase in the Reynolds number… More >

  • Open Access

    ARTICLE

    Efficient Engineering Prediction of Turbulent Wing Tip Vortex Flows

    Sung-Eun Kim1, Shin Hyung Rhee2

    CMES-Computer Modeling in Engineering & Sciences, Vol.62, No.3, pp. 291-310, 2010, DOI:10.3970/cmes.2010.062.291

    Abstract Turbulent flow past a finite wing has been computed to assess the fidelity of modern computational fluid dynamics in predicting tip vortex flows. The efficacy of a feature-adaptive local mesh refinement to resolve the steep gradients in the flow field near the tip vortex is demonstrated. The impact of turbulence modeling is evaluated using several popular eddy viscosity models and a Reynolds stress transport model. The results indicate that the combination of a computational mesh with an adequate resolution, high-order spatial discretization scheme along with the use of advanced turbulence models can predict tip vortex flows with acceptable accuracy. More >

  • Open Access

    ARTICLE

    Mesh Effects in Predictions of Progressive Damage in 3D Woven Composites

    R. Valisetty1,2, A. Rajendran1,3, D. Grove2

    CMES-Computer Modeling in Engineering & Sciences, Vol.60, No.1, pp. 41-72, 2010, DOI:10.3970/cmes.2010.060.041

    Abstract A multi-scale model exhibiting progressive damage is considered for a 3D-woven composite. It is based on the evolution of some fundamental damage modes in a representative volume element (RVE) of a composite's woven architecture. The overall response of a woven composite due to a variety of damage modes is computationally obtained through a transformation field analysis (TFA) that is capable of quantifying the effects of spatial distribution of micro stresses and strains on strength. Since the model is computationally intensive, its numerical requirements are to be understood before it can successfully be used in design studies or in conjunction with… More >

  • Open Access

    ARTICLE

    Numerical Prediction of Young's and Shear Moduli of Carbon Nanotube Composites Incorporating Nanoscale and Interfacial Effects

    G.I. Giannopoulos1, S.K. Georgantzinos2, D.E. Katsareas2, N.K. Anifantis2

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.3, pp. 231-248, 2010, DOI:10.3970/cmes.2010.056.231

    Abstract A hybrid finite element formulation, combining nanoscopic and macroscopic considerations is proposed, for the prediction of the elastic mechanical properties of single walled carbon nanotube (SWCNT)-based composites. The nanotubes are modeled according to the molecular mechanics theory via the use of spring elements, while the matrix is modeled as a continuum medium. A new formulation concerning the load transfer between the nanotubes and matrix is proposed. The interactions between the two phases are implemented by utilizing appropriate stiffness variations describing a heterogeneous interfacial region. A periodic distribution and orientation of the SWCNTs is considered. Thereupon, the nanocomposite is modeled using… More >

  • Open Access

    ARTICLE

    Analysis and Prediction of Multi-Heating Lines Effect on Plate Forming by Line Heating

    Adan Vega1, Sherif Rashed2, Yoshihiko Tango3, Morinobu Ishiyama3, Hidekazu Murakawa2

    CMES-Computer Modeling in Engineering & Sciences, Vol.28, No.1, pp. 1-14, 2008, DOI:10.3970/cmes.2008.028.001

    Abstract Experimental observations have shown that the inherent deformation produced by multi-heating lines is not a simple addition of the inherent deformation produced by single heating lines. Therefore, to accurately predict inherent deformation, the method of superposing inherent deformation of single heating lines is not appropriate. To overcome this difficulty, the authors investigate the influence of multi-heating lines on line heating inherent deformation. First, the influence of previous heating lines on inherent deformation of overlapping, parallel and crossing heating lines is clarified. The influence of the proximity to plate side edge on inherent deformation is also taken into account in the… More >

  • Open Access

    ARTICLE

    Property Predictions for Packed Columns Using Monte Carlo and Discrete Element Digital Packing Algorithms

    C. Xu1, X. Jia2, R. A. Williams2, E. H. Stitt3, M. Nijemeisland3, S. El-Bachir4, A. J. Sederman4, L. F. Gladden4

    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.2, pp. 117-126, 2008, DOI:10.3970/cmes.2008.023.117

    Abstract Existing theories and computer models for packed columns are either incapable of handling complex pellet shapes or based on over-simplified packing geometry. A digital packing algorithm, namely DigiPac, has recently been developed to fill the gap. It is capable of packing of particles of any shapes and sizes in a container of arbitrary geometry, and is a first step towards a practical computational tool for reliable predictions of packed column properties based on the actual pellet shapes. DigiPac can operate in two modes: a Monte Carlo mode in which particles undergo directional diffusive motions; and a Discrete Element mode where… More >

  • Open Access

    ARTICLE

    The Moving Finite Element Method Based on Delaunay Automatic triangulation For Fracture Path Prediction Simulations In Nonlinear Elastic-Plastic Materials

    T. Nishioka1, Y. Kobayashi1, T. Fujimoto1

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.3, pp. 231-238, 2007, DOI:10.3970/cmes.2007.017.231

    Abstract First, for growing cracks in elastic-plastic materials, an incremental variational principle is developed to satisfy the boundary conditions near newly created crack surfaces. Then using this variational principle, a moving finite element method is formulated and developed, based on the Delaunay automatic triangulation. Furthermore, theoretical backgrounds on numerical prediction for fracture path of curving crack using T* integral are explained. Using the automatic moving finite element method, fracture-path prediction simulations are successfully carried out. More >

  • Open Access

    ARTICLE

    Prediction of Crack Growth in Steam Generator Tubes Using Monte Carlo Simulation

    Jae Bong Lee1, Jai Hak Park1, Sung Ho Lee2, Hong-Deok Kim2, Han-Sub Chung2

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.1, pp. 9-16, 2006, DOI:10.3970/cmes.2006.011.009

    Abstract The growth of stress corrosion cracks in steam generator tubes is predicted using the Monte Carlo simulation and statistical approaches. The statistical parameters that represent the characteristics of crack growth and crack initiation are derived from in-service inspection (ISI) non-destructive evaluation (NDE) data. Based on the statistical approaches, crack growth models are proposed and applied to predict crack distribution at the end of cycle (EOC). Because in-service inspection (ISI) crack data is different from physical crack data, a simple method for predicting the physical number of cracks from periodic in-service inspection data is proposed in this study. Actual number of… More >

Displaying 791-800 on page 80 of 831. Per Page