Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (839)
  • Open Access

    ARTICLE

    A Perceptron Algorithm for Forest Fire Prediction Based on Wireless Sensor Networks

    Haoran Zhu1, Demin Gao1,2,*, Shuo Zhang1

    Journal on Internet of Things, Vol.1, No.1, pp. 25-31, 2019, DOI:10.32604/jiot.2019.05897

    Abstract Forest fire prediction constitutes a significant component of forest management. Timely and accurate forest fire prediction will greatly reduce property and natural losses. A quick method to estimate forest fire hazard levels through known climatic conditions could make an effective improvement in forest fire prediction. This paper presents a description and analysis of a forest fire prediction methods based on machine learning, which adopts WSN (Wireless Sensor Networks) technology and perceptron algorithms to provide a reliable and rapid detection of potential forest fire. Weather data are gathered by sensors, and then forwarded to the server, where a fire hazard index… More >

  • Open Access

    ARTICLE

    Protein Secondary Structure Prediction with Dynamic Self-Adaptation Combination Strategy Based on Entropy

    Yuehan Du1,2, Ruoyu Zhang1, Xu Zhang1, Antai Ouyang3, Xiaodong Zhang4, Jinyong Cheng1, Wenpeng Lu1,*

    Journal of Quantum Computing, Vol.1, No.1, pp. 21-28, 2019, DOI:10.32604/jqc.2019.06063

    Abstract The algorithm based on combination learning usually is superior to a single classification algorithm on the task of protein secondary structure prediction. However, the assignment of the weight of the base classifier usually lacks decision-making evidence. In this paper, we propose a protein secondary structure prediction method with dynamic self-adaptation combination strategy based on entropy, where the weights are assigned according to the entropy of posterior probabilities outputted by base classifiers. The higher entropy value means a lower weight for the base classifier. The final structure prediction is decided by the weighted combination of posterior probabilities. Extensive experiments on CB513… More >

  • Open Access

    ARTICLE

    Theoretical Prediction and Experimental Testing of Mechanical Properties for 3D Printed Silk Fibroin-Type II Collagen Scaffolds for Cartilage Regeneration

    Lilan Gao1,2,*, Qingxian Yuan1,2, Ruixin Li3,*, Lei Chen1,2, Chunqiu Zhang1,2, Xizheng Zhang1,2

    Molecular & Cellular Biomechanics, Vol.15, No.2, pp. 85-98, 2018, DOI: 10.3970/mcb.2018.00329

    Abstract Silk fibroin-typeⅡcollagen scaffold was made by 3D printing technique and freeze-drying method, and its mechanical properties were studied by experiments and theoretical prediction. The results show that the three-dimensional silk fibroin-typeⅡ collagen scaffold has good porosity and water absorption, which is (89.3%+3.26%) and (824.09%+93.05%), respectively. With the given strain value, the stress of scaffold decreases rapidly firstly and then tends to be stable during the stress relaxation. Both initial and instantaneous stresses increase with increase of applied strain value. The creep strains of scaffold with different stress levels show the two stages: the rapidly increasing stage and the second stable… More >

  • Open Access

    ARTICLE

    Optimal Mass Distribution Prediction for Human Proximal Femur with Bi-modulus Property

    Jiao Shi, Kun Cai, Qing H. Qin†,‡

    Molecular & Cellular Biomechanics, Vol.11, No.4, pp. 235-248, 2014, DOI:10.3970/mcb.2014.011.235

    Abstract Simulation of the mass distribution in a human proximal femur is important to provide a reasonable therapy scheme for a patient with osteoporosis. An algorithm is developed for prediction of optimal mass distribution in a human proximal femur under a given loading environment. In this algorithm, the bone material is assumed to be bi-modulus, i.e., the tension modulus is not identical to the compression modulus in the same direction. With this bi-modulus bone material, a topology optimization method, i.e., modified SIMP approach, is employed to determine the optimal mass distribution in a proximal femur. The effects of the difference between… More >

  • Open Access

    ARTICLE

    Drug Side-Effect Prediction Using Heterogeneous Features and Bipartite Local Models

    Yi Zheng1,2, Wentao Zhao2,*, Chengcheng Sun2, Qian Li1

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 481-496, 2019, DOI:10.32604/cmc.2019.05536

    Abstract Drug side-effects impose massive costs on society, leading to almost one-third drug failure in the drug discovery process. Therefore, early identification of potential side-effects becomes vital to avoid risks and reduce costs. Existing computational methods employ few drug features and predict drug side-effects from either drug side or side-effect side separately. In this work, we explore to predict drug side-effects by combining heterogeneous drug features and employing the bipartite local models (BLMs) which fuse predictions from both the drug side and side-effect side. Specifically, we integrate drug chemical structures, drug interacted proteins and drug associated genes into a unified framework… More >

  • Open Access

    ARTICLE

    Reversible Data Hiding Based on Pixel-Value-Ordering and Pixel Block Merging Strategy

    Wengui Su1,2, Xiang Wang3,*, Yulong Shen1

    CMC-Computers, Materials & Continua, Vol.59, No.3, pp. 925-941, 2019, DOI:10.32604/cmc.2019.04842

    Abstract With the reversible data hiding method based on pixel-value-ordering, data are embedded through the modification of the maximum and minimum values of a block. A significant relationship exists between the embedding performance and the block size. Traditional pixel-value-ordering methods utilize pixel blocks with a fixed size to embed data; the smaller the pixel blocks, greater is the embedding capacity. However, it tends to result in the deterioration of the quality of the marked image. Herein, a novel reversible data hiding method is proposed by incorporating a block merging strategy into Li et al.’s pixel-value-ordering method, which realizes the dynamic control… More >

  • Open Access

    ARTICLE

    Waveband Selection with Equivalent Prediction Performance for FTIR/ATR Spectroscopic Analysis of COD in Sugar Refinery Waste Water

    Jun Xie1, Dapeng Sun1, Jiaxiang Cai2, Fuhong Cai1,*

    CMC-Computers, Materials & Continua, Vol.59, No.2, pp. 687-695, 2019, DOI:10.32604/cmc.2019.03658

    Abstract The level of chemical oxygen demand (COD) is an important index to evaluate whether sewage meets the discharge requirements, so corresponding tests should be carried out before discharge. Fourier transform infrared spectroscopy (FTIR) and attenuated total reflectance (ATR) can detect COD in sewage effectively, which has advantages over conventional chemical analysis methods. And the selection of characteristic bands was one of the key links in the application of FTIR/ATR spectroscopy. In this work, based on the moving window partial least-squares (MWPLS) regression to select a characteristic wavelength, a method of equivalent wavelength selection was proposed combining with paired t-test equivalent… More >

  • Open Access

    ARTICLE

    Numerical Prediction of Dynamically Propagating and Branching Cracks Using Moving Finite Element Method

    S. Tchouikov1, T. Nishioka1, T. Fujimoto1

    CMC-Computers, Materials & Continua, Vol.1, No.2, pp. 191-204, 2004, DOI:10.3970/cmc.2004.001.191

    Abstract Phenomena of dynamic crack branching are investigated numerically from a macroscopic point of view. Repetitive branching phenomena, interaction of cracks after bifurcation and their stability, bifurcation into two and three branches were the objectives of this research. For the analysis of dynamic crack branching, recently we developed moving finite element method based on Delaunay automatic triangulation [Nishioka, Furutuka, Tchouikov and Fujimoto (2002)]. In this study this method was extended to be applicable for complicated crack branching phenomena, such as bifurcation of the propagating crack into more than two branches, multiple crack bifurcation and so on. The switching method of the… More >

  • Open Access

    ARTICLE

    Prediction of the behavior of RC Beams Strengthened with FRP Plates

    Ricardo Perera1

    CMC-Computers, Materials & Continua, Vol.1, No.2, pp. 153-172, 2004, DOI:10.3970/cmc.2004.001.153

    Abstract Epoxy-bonding a composite plate to the tension face is an effective technique to repair reinforced concrete beams since it increases their strength and rigidity. In this paper, the structural behavior of reinforced concrete beams with fibre reinforced polymer (FRP) plates is studied numerically. For it, a numerical damage model is used in order to predict their strength, stiffness and failure modes observed in experimental tests taking into account the influence of different variables such as the amount of steel reinforcement, the type and amount of external reinforcement, the plate length, etc. The consideration of concrete cracking and the yielding of… More >

  • Open Access

    ARTICLE

    Computational Machine Learning Representation for the Flexoelectricity Effect in Truncated Pyramid Structures

    Khader M. Hamdia2, Hamid Ghasemi3, Xiaoying Zhuang4,5, Naif Alajlan1, Timon Rabczuk1,2,*

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 79-87, 2019, DOI:10.32604/cmc.2019.05882

    Abstract In this study, machine learning representation is introduced to evaluate the flexoelectricity effect in truncated pyramid nanostructure under compression. A Non-Uniform Rational B-spline (NURBS) based IGA formulation is employed to model the flexoelectricity. We investigate 2D system with an isotropic linear elastic material under plane strain conditions discretized by 45×30 grid of B-spline elements. Six input parameters are selected to construct a deep neural network (DNN) model. They are the Young's modulus, two dielectric permittivity constants, the longitudinal and transversal flexoelectric coefficients and the order of the shape function. The outputs of interest are the strain in the stress direction… More >

Displaying 771-780 on page 78 of 839. Per Page