Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (931)
  • Open Access

    ARTICLE

    Numerical Investigation of Porosity and Aggregate Volume Ratio Effects on the Mechanical Behavior of Lightweight Aggregate Concrete

    Safwan Al-sayed1, Xi Wang1, Yijiang Peng1,*, Esraa Hyarat2, Ahmad Ali AlZubi3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.074068 - 12 January 2026

    Abstract In modern construction, Lightweight Aggregate Concrete (LWAC) has been recognized as a vital material of concern because of its unique properties, such as reduced density and improved thermal insulation. Despite the extensive knowledge regarding its macroscopic properties, there is a wide knowledge gap in understanding the influence of microscale parameters like aggregate porosity and volume ratio on the mechanical response of LWAC. This study aims to bridge this knowledge gap, spurred by the need to enhance the predictability and applicability of LWAC in various construction environments. With the help of advanced numerical methods, including the… More >

  • Open Access

    ARTICLE

    Data-Driven Prediction and Optimization of Mechanical Properties and Vibration Damping in Cast Iron–Granite-Epoxy Hybrid Composites

    Girish Hariharan1, Vinyas1, Gowrishankar Mandya Chennegowda1, Nitesh Kumar1, Shiva Kumar1, Deepak Doreswamy2, Subraya Krishna Bhat1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073772 - 12 January 2026

    Abstract This study presents a framework involving statistical modeling and machine learning to accurately predict and optimize the mechanical and damping properties of hybrid granite–epoxy (G–E) composites reinforced with cast iron (CI) filler particles. Hybrid G–E composite with added cast iron (CI) filler particles enhances stiffness, strength, and vibration damping, offering enhanced performance for vibration-sensitive engineering applications. Unlike conventional approaches, this work simultaneously employs Artificial Neural Networks (ANN) for high-accuracy property prediction and Response Surface Methodology (RSM) for in-depth analysis of factor interactions and optimization. A total of 24 experimental test data sets of varying input… More >

  • Open Access

    ARTICLE

    Machine Learning Based Simulation, Synthesis, and Characterization of Zinc Oxide/Graphene Oxide Nanocomposite for Energy Storage Applications

    Tahir Mahmood1,*, Muhammad Waseem Ashraf1,*, Shahzadi Tayyaba2, Muhammad Munir3, Babiker M. A. Abdel-Banat3, Hassan Ali Dinar3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072436 - 12 January 2026

    Abstract Artificial intelligence (AI) based models have been used to predict the structural, optical, mechanical, and electrochemical properties of zinc oxide/graphene oxide nanocomposites. Machine learning (ML) models such as Artificial Neural Networks (ANN), Support Vector Regression (SVR), Multilayer Perceptron (MLP), and hybrid, along with fuzzy logic tools, were applied to predict the different properties like wavelength at maximum intensity (444 nm), crystallite size (17.50 nm), and optical bandgap (2.85 eV). While some other properties, such as energy density, power density, and charge transfer resistance, were also predicted with the help of datasets of 1000 (80:20). In… More >

  • Open Access

    ARTICLE

    First-Principles Study on the Mechanical and Thermodynamic Properties of (NbZrHfTi)C High-Entropy Ceramics

    Yonggang Tong1,*, Kai Yang1, Pengfei Li1, Yongle Hu1, Xiubing Liang2,*, Jian Liu3, Yejun Li4, Jingzhong Fang1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.071890 - 10 November 2025

    Abstract (NbZrHfTi)C high-entropy ceramics, as an emerging class of ultra-high-temperature materials, have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional high-temperature properties. This study systematically investigates the mechanical properties of (NbZrHfTi)C high-entropy ceramics by employing first-principles density functional theory, combined with the Debye-Grüneisen model, to explore the variations in their thermophysical properties with temperature (0–2000 K) and pressure (0–30 GPa). Thermodynamically, the calculated mixing enthalpy and Gibbs free energy confirm the feasibility of forming a stable single-phase solid solution in (NbZrHfTi)C. The calculated results of the elastic stiffness constant indicate that the… More >

  • Open Access

    ARTICLE

    Coupled Effects of Single-Vacancy Defect Positions on the Mechanical Properties and Electronic Structure of Aluminum Crystals

    Binchang Ma1, Xinhai Yu2, Gang Huang3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.071320 - 10 November 2025

    Abstract Vacancy defects, as fundamental disruptions in metallic lattices, play an important role in shaping the mechanical and electronic properties of aluminum crystals. However, the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood. In this study, transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys, suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation. To complement these observations, first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum. The stress response, total energy, density of states More >

  • Open Access

    ARTICLE

    Effect of Drying Methods on the Morphology and Electrochemical Properties of Cellulose Gel Polymer Electrolytes for Lithium-Ion Batteries

    Jiling Song1, Hua Wang2,*, Jianbing Guo1, Minghua Lin2, Bin Zheng2,*, Jiqiang Wu3,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1143-1157, 2025, DOI:10.32604/jpm.2025.073414 - 26 December 2025

    Abstract The pursuit of safer energy storage systems is driving the development of advanced electrolytes for lithium-ion batteries. Traditional liquid electrolytes pose flammability risks, while solid-state alternatives often suffer from low ionic conductivity. Gel polymer electrolytes (GPEs) emerge as a promising compromise, combining the safety of solids with the ionic conductivity of liquids. Cellulose, an abundant and eco-friendly polymer, presents an ideal base material for sustainable GPEs due to its biocompatibility and mechanical strength. This study systematically investigates how drying methods affect cellulose-based GPEs. Cellulose hydrogels were synthesized through dissolution-crosslinking and processed using vacuum drying (VD),… More >

  • Open Access

    ARTICLE

    Unveiling Ionic Conductivity and Ion Transport Properties in Polyvinyl Alcohol-Based Gel Polymer Electrolytes with Quaternary Ammonium Iodide

    M. F. Aziz1,2,*, A. A. Rahim1, A. R. M. Rais1,2,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1097-1109, 2025, DOI:10.32604/jpm.2025.071129 - 26 December 2025

    Abstract To study the behavior of structural dynamics, ionic conductivity and ion transport properties, the gel polymer electrolytes (GPEs) was developed using polyvinyl alcohol in combination with potassium iodide, dimethyl sulfoxide, ethylene carbonate, propylene carbonate and tetra-N-propylammonium iodide (C12H28IN), The GPEs were synthesized via a solution mixing technique, systematically varying the tetra-N-propylammonium iodide concentration to optimize ionic transport properties. The gel polymer electrolytes (GPEs) preparation was initially dissolving the potassium iodide and tetra-N-propylammonium iodide in a measured combination of ethylene carbonate, propylene carbonate, and dimethyl sulfoxide within a glass container. Subsequently, polyvinyl alcohol (PVA) was introduced into… More >

  • Open Access

    ARTICLE

    Finite Element Analysis of the Influence of End Grouting Defects in Grouted Sleeve on the Structural Performance of Precast Reinforced Concrete Columns

    Shuoting Xiao1,*, Nikita Igorevich Fomin1, Kirill Anatolyevich Khvostunkov2, Chong Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2821-2847, 2025, DOI:10.32604/cmes.2025.071961 - 23 December 2025

    Abstract Precast concrete structures have gained popularity due to their advantages. However, the seismic performance of their connection joints remains an area of ongoing research and improvement. Grouted Sleeve Connection (GSC) offers a solution for connecting reinforcements in precast components, but their vulnerability to internal defects, such as construction errors and material variability, can significantly impact performance. This article presents a finite element analysis (FEA) to evaluate the impact of internal grouting defects in GSC on the structural performance of precast reinforced concrete columns. Four finite element models representing GSC with varying degrees of defects were… More > Graphic Abstract

    Finite Element Analysis of the Influence of End Grouting Defects in Grouted Sleeve on the Structural Performance of Precast Reinforced Concrete Columns

  • Open Access

    ARTICLE

    Half-metallicity and structural properties of low-concentration Fe-doped SrS alloys: a first-principles study

    S. Saleema, U. Parveena, H. AL-Ghamdib,*, M. Yaseena, I. Sajjada, Nasarullaha

    Chalcogenide Letters, Vol.22, No.3, pp. 223-237, 2025, DOI:10.15251/CL.2025.223.223

    Abstract Present research reveals the doping effect on physical properties of Sr1-xFexS by employing ab-initio calculations. The negative formation energy and optimization outcomes exhibit the stability of the Sr1-xFexS alloys with ferromagnetic phase. Spin dependent band structure (BS) and density of states (DOS) interpret that Sr1-xFexS revealed half metallic ferromagnetic (HMF) nature at 6.25% and 12.5% of Fe doping while metallic character is revealed at 25% concentration of dopant. Spin-up state of Sr0.9375Fe0.0625S and Sr0.8750Fe0.1250S depicts semiconductive behavior with bandgap value of 2.01/2.33 eV, correspondingly, while metallic in spin-down channel. The magnetism in the system is mainly originated because… More >

  • Open Access

    ARTICLE

    The structural, mechanical, electronic, and thermodynamic properties of Cu-doped SnTe studied by first-principles calculations

    Q. N. Gaoa, H. L. Zhanga, Z. H. Donga, Y. J. Liub, N. N. Zhoua, P. P. Zhanga, J. Wangc,*

    Chalcogenide Letters, Vol.22, No.3, pp. 205-221, 2025, DOI:10.15251/CL.2025.223.205

    Abstract The structural, mechanical, electronic, and thermodynamic properties of CuCxSnC1-xTe (x = 0, 0.03125, 0.0625, 0.125, and 0.25) are investigated through first-principles calculations. The studied structures are all cubic and own negative enthalpy of formation. The elastic constants and mechanical properties (B, G, E and ν) are predicted. The bandgap of SnTe evaluated by HSE06 is 0.25 eV, closing to the experimental data 0.19 eV. All studied Cu-doped compounds behave metallic. In addition, the thermodynamic properties (G, H, S, CP, and CCV) of the materials, together with the bulk modulus and thermal expansion coefficient versus temperature have been More >

Displaying 1-10 on page 1 of 931. Per Page