Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Image Steganography by Pixel-Value Differencing Using General Quantization Ranges

    Da-Chun Wu*, Zong-Nan Shih

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 353-383, 2024, DOI:10.32604/cmes.2024.050813

    Abstract A new steganographic method by pixel-value differencing (PVD) using general quantization ranges of pixel pairs’ difference values is proposed. The objective of this method is to provide a data embedding technique with a range table with range widths not limited to powers of 2, extending PVD-based methods to enhance their flexibility and data-embedding rates without changing their capabilities to resist security attacks. Specifically, the conventional PVD technique partitions a grayscale image into 1 × 2 non-overlapping blocks. The entire range [0, 255] of all possible absolute values of the pixel pairs’ grayscale differences in the… More >

  • Open Access

    ARTICLE

    A Novel Quantization and Model Compression Approach for Hardware Accelerators in Edge Computing

    Fangzhou He1,3, Ke Ding1,2, Dingjiang Yan3, Jie Li3,*, Jiajun Wang1,2, Mingzhe Chen1,2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3021-3045, 2024, DOI:10.32604/cmc.2024.053632

    Abstract Massive computational complexity and memory requirement of artificial intelligence models impede their deployability on edge computing devices of the Internet of Things (IoT). While Power-of-Two (PoT) quantization is proposed to improve the efficiency for edge inference of Deep Neural Networks (DNNs), existing PoT schemes require a huge amount of bit-wise manipulation and have large memory overhead, and their efficiency is bounded by the bottleneck of computation latency and memory footprint. To tackle this challenge, we present an efficient inference approach on the basis of PoT quantization and model compression. An integer-only scalar PoT quantization (IOS-PoT)… More >

  • Open Access

    ARTICLE

    Optimized Binary Neural Networks for Road Anomaly Detection: A TinyML Approach on Edge Devices

    Amna Khatoon1, Weixing Wang1,*, Asad Ullah2, Limin Li3,*, Mengfei Wang1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 527-546, 2024, DOI:10.32604/cmc.2024.051147

    Abstract Integrating Tiny Machine Learning (TinyML) with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level. Constrained devices efficiently implement a Binary Neural Network (BNN) for road feature extraction, utilizing quantization and compression through a pruning strategy. The modifications resulted in a 28-fold decrease in memory usage and a 25% enhancement in inference speed while only experiencing a 2.5% decrease in accuracy. It showcases its superiority over conventional detection algorithms in different road image scenarios. Although constrained by computer resources and training datasets, our results indicate opportunities for More >

  • Open Access

    ARTICLE

    Learning Vector Quantization-Based Fuzzy Rules Oversampling Method

    Jiqiang Chen, Ranran Han, Dongqing Zhang, Litao Ma*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5067-5082, 2024, DOI:10.32604/cmc.2024.051494

    Abstract Imbalanced datasets are common in practical applications, and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes. However, the creation of fuzzy rules typically depends on expert knowledge, which may not fully leverage the label information in training data and may be subjective. To address this issue, a novel fuzzy rule oversampling approach is developed based on the learning vector quantization (LVQ) algorithm. In this method, the label information of the training data is utilized to determine the antecedent… More >

  • Open Access

    ARTICLE

    Reinforcement Learning Based Quantization Strategy Optimal Assignment Algorithm for Mixed Precision

    Yuejiao Wang, Zhong Ma*, Chaojie Yang, Yu Yang, Lu Wei

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 819-836, 2024, DOI:10.32604/cmc.2024.047108

    Abstract The quantization algorithm compresses the original network by reducing the numerical bit width of the model, which improves the computation speed. Because different layers have different redundancy and sensitivity to data bit width. Reducing the data bit width will result in a loss of accuracy. Therefore, it is difficult to determine the optimal bit width for different parts of the network with guaranteed accuracy. Mixed precision quantization can effectively reduce the amount of computation while keeping the model accuracy basically unchanged. In this paper, a hardware-aware mixed precision quantization strategy optimal assignment algorithm adapted to… More >

  • Open Access

    ARTICLE

    Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks

    Lu Wei, Zhong Ma*, Chaojie Yang

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 981-1000, 2024, DOI:10.32604/cmes.2023.027085

    Abstract The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing. Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices. In order to reduce the complexity and overhead of deploying neural networks on Integer-only hardware, most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network. However, although symmetric quantization has the advantage of easier implementation, it is sub-optimal for cases where the range could be skewed and not symmetric. This often comes at the… More > Graphic Abstract

    Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks

  • Open Access

    ARTICLE

    FPGA Optimized Accelerator of DCNN with Fast Data Readout and Multiplier Sharing Strategy

    Tuo Ma, Zhiwei Li, Qingjiang Li*, Haijun Liu, Zhongjin Zhao, Yinan Wang

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3237-3263, 2023, DOI:10.32604/cmc.2023.045948

    Abstract With the continuous development of deep learning, Deep Convolutional Neural Network (DCNN) has attracted wide attention in the industry due to its high accuracy in image classification. Compared with other DCNN hardware deployment platforms, Field Programmable Gate Array (FPGA) has the advantages of being programmable, low power consumption, parallelism, and low cost. However, the enormous amount of calculation of DCNN and the limited logic capacity of FPGA restrict the energy efficiency of the DCNN accelerator. The traditional sequential sliding window method can improve the throughput of the DCNN accelerator by data multiplexing, but this method’s… More >

  • Open Access

    ARTICLE

    A Secure and Effective Energy-Aware Fixed-Point Quantization Scheme for Asynchronous Federated Learning

    Zerui Zhen1, Zihao Wu2, Lei Feng1,*, Wenjing Li1, Feng Qi1, Shixuan Guo1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2939-2955, 2023, DOI:10.32604/cmc.2023.036505

    Abstract Asynchronous federated learning (AsynFL) can effectively mitigate the impact of heterogeneity of edge nodes on joint training while satisfying participant user privacy protection and data security. However, the frequent exchange of massive data can lead to excess communication overhead between edge and central nodes regardless of whether the federated learning (FL) algorithm uses synchronous or asynchronous aggregation. Therefore, there is an urgent need for a method that can simultaneously take into account device heterogeneity and edge node energy consumption reduction. This paper proposes a novel Fixed-point Asynchronous Federated Learning (FixedAsynFL) algorithm, which could mitigate the… More >

  • Open Access

    ARTICLE

    Metaheuristics with Vector Quantization Enabled Codebook Compression Model for Secure Industrial Embedded Environment

    Adepu Shravan Kumar, S. Srinivasan*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3607-3620, 2023, DOI:10.32604/iasc.2023.036647

    Abstract At the present time, the Industrial Internet of Things (IIoT) has swiftly evolved and emerged, and picture data that is collected by terminal devices or IoT nodes are tied to the user's private data. The use of image sensors as an automation tool for the IIoT is increasingly becoming more common. Due to the fact that this organisation transfers an enormous number of photographs at any one time, one of the most significant issues that it has is reducing the total quantity of data that is sent and, as a result, the available bandwidth, without… More >

  • Open Access

    ARTICLE

    Detecting Double JPEG Compressed Color Images via an Improved Approach

    Xiaojie Zhao1, Xiankui Meng1, Ruyong Ren2, Shaozhang Niu2,*, Zhenguang Gao3

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1765-1781, 2023, DOI:10.32604/cmc.2023.029552

    Abstract Detecting double Joint Photographic Experts Group (JPEG) compression for color images is vital in the field of image forensics. In previous researches, there have been various approaches to detecting double JPEG compression with different quantization matrices. However, the detection of double JPEG color images with the same quantization matrix is still a challenging task. An effective detection approach to extract features is proposed in this paper by combining traditional analysis with Convolutional Neural Networks (CNN). On the one hand, the number of nonzero pixels and the sum of pixel values of color space conversion error… More >

Displaying 1-10 on page 1 of 21. Per Page