Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (86)
  • Open Access

    ARTICLE

    Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization

    Songsong Zhang1, Huazhong Jin1,2,*, Zhiwei Ye1,2, Jia Yang1,2, Jixin Zhang1,2, Dongfang Wu1,2, Xiao Zheng1,2, Dingfeng Song1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068044 - 10 November 2025

    Abstract Multi-label feature selection (MFS) is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels. However, traditional centralized methods face significant challenges in privacy-sensitive and distributed settings, often neglecting label dependencies and suffering from low computational efficiency. To address these issues, we introduce a novel framework, Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization (DHBCPSO-MSR). Leveraging the federated learning paradigm, Fed-MFSDHBCPSO allows clients to perform local feature selection (FS) using DHBCPSO-MSR. Locally selected feature subsets are encrypted with differential privacy (DP) and transmitted… More >

  • Open Access

    ARTICLE

    ARAE: An Adaptive Robust AutoEncoder for Network Anomaly Detection

    Chunyong Yin, Williams Kyei*

    Journal of Cyber Security, Vol.7, pp. 615-635, 2025, DOI:10.32604/jcs.2025.072740 - 24 December 2025

    Abstract The evolving sophistication of network threats demands anomaly detection methods that are both robust and adaptive. While autoencoders excel at learning normal traffic patterns, they struggle with complex feature interactions and require manual tuning for different environments. We introduce the Adaptive Robust AutoEncoder (ARAE), a novel framework that dynamically balances reconstruction fidelity with latent space regularization through learnable loss weighting. ARAE incorporates multi-head attention to model feature dependencies and fuses multiple anomaly indicators into an adaptive scoring mechanism. Extensive evaluation on four benchmark datasets demonstrates that ARAE significantly outperforms existing autoencoder variants and classical methods, More >

  • Open Access

    ARTICLE

    A Hybrid Framework Integrating Deterministic Clustering, Neural Networks, and Energy-Aware Routing for Enhanced Efficiency and Longevity in Wireless Sensor Network

    Muhammad Salman Qamar1,*, Muhammad Fahad Munir2

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5463-5485, 2025, DOI:10.32604/cmc.2025.064442 - 30 July 2025

    Abstract Wireless Sensor Networks (WSNs) have emerged as crucial tools for real-time environmental monitoring through distributed sensor nodes (SNs). However, the operational lifespan of WSNs is significantly constrained by the limited energy resources of SNs. Current energy efficiency strategies, such as clustering, multi-hop routing, and data aggregation, face challenges, including uneven energy depletion, high computational demands, and suboptimal cluster head (CH) selection. To address these limitations, this paper proposes a hybrid methodology that optimizes energy consumption (EC) while maintaining network performance. The proposed approach integrates the Low Energy Adaptive Clustering Hierarchy with Deterministic (LEACH-D) protocol using More >

  • Open Access

    ARTICLE

    A Design of Predictive Intelligent Networks for the Analysis of Fractional Model of TB-Virus

    Muhammad Asif Zahoor Raja1, Aqsa Zafar Abbasi2, Kottakkaran Sooppy Nisar3,*, Ayesha Rafiq2, Muhammad Shoaib4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2133-2153, 2025, DOI:10.32604/cmes.2025.058020 - 30 May 2025

    Abstract Being a nonlinear operator, fractional derivatives can affect the enforcement of existence at any given time. As a result, the memory effect has an impact on all nonlinear processes modeled by fractional order differential equations (FODEs). The goal of this study is to increase the fractional model of the TB virus’s (FMTBV) accuracy. Stochastic solvers have never been used to solve FMTBV previously. The Bayesian regularized artificial (BRA) method and neural networks (NNs), often referred to as BRA-NNs, were used to solve the FMTBV model. Each scenario features five occurrences that each reflect a different… More >

  • Open Access

    ARTICLE

    Deterministic Convergence Analysis for GRU Networks via Smoothing Regularization

    Qian Zhu1, Qian Kang1, Tao Xu2, Dengxiu Yu3,*, Zhen Wang1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1855-1879, 2025, DOI:10.32604/cmc.2025.061913 - 16 April 2025

    Abstract In this study, we present a deterministic convergence analysis of Gated Recurrent Unit (GRU) networks enhanced by a smoothing regularization technique. While GRU architectures effectively mitigate gradient vanishing/exploding issues in sequential modeling, they remain prone to overfitting, particularly under noisy or limited training data. Traditional regularization, despite enforcing sparsity and accelerating optimization, introduces non-differentiable points in the error function, leading to oscillations during training. To address this, we propose a novel smoothing regularization framework that replaces the non-differentiable absolute function with a quadratic approximation, ensuring gradient continuity and stabilizing the optimization landscape. Theoretically, we rigorously… More >

  • Open Access

    ARTICLE

    SensFL: Privacy-Preserving Vertical Federated Learning with Sensitive Regularization

    Chongzhen Zhang1,2,*, Zhichen Liu3, Xiangrui Xu3, Fuqiang Hu3, Jiao Dai3, Baigen Cai1, Wei Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 385-404, 2025, DOI:10.32604/cmes.2024.055596 - 17 December 2024

    Abstract In the realm of Intelligent Railway Transportation Systems, effective multi-party collaboration is crucial due to concerns over privacy and data silos. Vertical Federated Learning (VFL) has emerged as a promising approach to facilitate such collaboration, allowing diverse entities to collectively enhance machine learning models without the need to share sensitive training data. However, existing works have highlighted VFL’s susceptibility to privacy inference attacks, where an honest but curious server could potentially reconstruct a client’s raw data from embeddings uploaded by the client. This vulnerability poses a significant threat to VFL-based intelligent railway transportation systems. In… More >

  • Open Access

    ARTICLE

    Enhanced Deep Reinforcement Learning Strategy for Energy Management in Plug-in Hybrid Electric Vehicles with Entropy Regularization and Prioritized Experience Replay

    Li Wang1,*, Xiaoyong Wang2

    Energy Engineering, Vol.121, No.12, pp. 3953-3979, 2024, DOI:10.32604/ee.2024.056705 - 22 November 2024

    Abstract Plug-in Hybrid Electric Vehicles (PHEVs) represent an innovative breed of transportation, harnessing diverse power sources for enhanced performance. Energy management strategies (EMSs) that coordinate and control different energy sources is a critical component of PHEV control technology, directly impacting overall vehicle performance. This study proposes an improved deep reinforcement learning (DRL)-based EMS that optimizes real-time energy allocation and coordinates the operation of multiple power sources. Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces. They often fail to strike an optimal balance between exploration and exploitation, and… More >

  • Open Access

    ARTICLE

    Uncertainty-Aware Physical Simulation of Neural Radiance Fields for Fluids

    Haojie Lian1, Jiaqi Wang1, Leilei Chen2,*, Shengze Li3, Ruochen Cao4, Qingyuan Hu5, Peiyun Zhao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1143-1163, 2024, DOI:10.32604/cmes.2024.048549 - 16 April 2024

    Abstract This paper presents a novel framework aimed at quantifying uncertainties associated with the 3D reconstruction of smoke from 2D images. This approach reconstructs color and density fields from 2D images using Neural Radiance Field (NeRF) and improves image quality using frequency regularization. The NeRF model is obtained via joint training of multiple artificial neural networks, whereby the expectation and standard deviation of density fields and RGB values can be evaluated for each pixel. In addition, customized physics-informed neural network (PINN) with residual blocks and two-layer activation functions are utilized to input the density fields of More >

  • Open Access

    ARTICLE

    Enhanced Differentiable Architecture Search Based on Asymptotic Regularization

    Cong Jin1, Jinjie Huang1,2,*, Yuanjian Chen1, Yuqing Gong1

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1547-1568, 2024, DOI:10.32604/cmc.2023.047489 - 27 February 2024

    Abstract In differentiable search architecture search methods, a more efficient search space design can significantly improve the performance of the searched architecture, thus requiring people to carefully define the search space with different complexity according to various operations. Meanwhile rationalizing the search strategies to explore the well-defined search space will further improve the speed and efficiency of architecture search. With this in mind, we propose a faster and more efficient differentiable architecture search method, AllegroNAS. Firstly, we introduce a more efficient search space enriched by the introduction of two redefined convolution modules. Secondly, we utilize a… More >

  • Open Access

    ARTICLE

    Attentive Neighborhood Feature Augmentation for Semi-supervised Learning

    Qi Liu1,2, Jing Li1,2,*, Xianmin Wang1,*, Wenpeng Zhao1

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1753-1771, 2023, DOI:10.32604/iasc.2023.039600 - 21 June 2023

    Abstract Recent state-of-the-art semi-supervised learning (SSL) methods usually use data augmentations as core components. Such methods, however, are limited to simple transformations such as the augmentations under the instance’s naive representations or the augmentations under the instance’s semantic representations. To tackle this problem, we offer a unique insight into data augmentations and propose a novel data-augmentation-based semi-supervised learning method, called Attentive Neighborhood Feature Augmentation (ANFA). The motivation of our method lies in the observation that the relationship between the given feature and its neighborhood may contribute to constructing more reliable transformations for the data, and further… More >

Displaying 1-10 on page 1 of 86. Per Page