Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    REVIEW

    Biofuel Recovery from Plantain and Banana Plant Wastes: Integration of Biochemical and Thermochemical Approach

    Abdulmoseen Segun Giwa1,*, Mingqiang Sheng2, Ndungutse Jean Maurice3, Xinxin Liu1, Zelong Wang1, Fengmin Chang4, Bo Huang4, Kaijun Wang4

    Journal of Renewable Materials, Vol.11, No.6, pp. 2593-2629, 2023, DOI:10.32604/jrm.2023.026314

    Abstract Globally, fossil fuel dependence has created several environmental challenges and climate change. Hence, creating other alternative renewable and ecologically friendly bio-energy sources is necessary. Lignocellulosic biomass has gained significant attention recently as a renewable material for biofuel production. The large amounts of plantain and banana plant parts wasted after harvesting, as well as the peels generated daily by the fruit market and industries, demonstrate the potential of bioenergy resources. This review briefly assesses plantain and banana plant biomass (PBB) generated in the developing, developed, and underdeveloped countries, the consumable parts, and feasible products yield. It emphasized the advantages and disadvantages… More > Graphic Abstract

    Biofuel Recovery from Plantain and Banana Plant Wastes: Integration of Biochemical and Thermochemical Approach

  • Open Access

    ARTICLE

    Reducing the Environmental Impact of Construction by Using Renewable Materials

    Mike Lawrence

    Journal of Renewable Materials, Vol.3, No.3, pp. 163-174, 2015, DOI:10.7569/JRM.2015.634105

    Abstract The relative importance of embodied energy and operational energy on the environmental impact of construction are examined in this article. It highlights the fact that the targets set by the Kyoto Protocol are primarily being met by the reduction of in-use energy, and that the implications of that are that the energy embodied in buildings will increase in signifi cance from its current 17% level to 50% by 2050. The article describes how the use of bio-based renewable materials can make a signifi cant contribution to reducing not only the embodied energy of buildings by using the sequestration of CO2… More >

  • Open Access

    EDITORIAL

    Special Issue on “Biobased Construction Materials” in the Journal of Renewable Materials

    Journal of Renewable Materials, Vol.3, No.3, pp. 161-162, 2015, DOI:10.7569/JRM.2015.634113

    Abstract This article has no abstract. More >

  • Open Access

    EDITORIAL

    Special Issue on 15th Brazilian Polymer Conference: Biopolymers, Eco-Friendly and Biodegradable Polymers and Other Topics Related to Polymeric Materials Derived from Renewable Materials

    Antonio Aprigio da Silva Curvelo1, Antonio José Felix Carvalho2,*, Daniel Pasquini3

    Journal of Renewable Materials, Vol.9, No.4, pp. 599-600, 2021, DOI:10.32604/jrm.2021.015335

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Synthesis of Photoactive Compounds from Tall Oil Fatty Acids

    Beatrise Sture1,*, Mikelis Kirpluks1, Sergejs Gaidukovs2, Edgars Vanags1

    Journal of Renewable Materials, Vol.8, No.9, pp. 1077-1089, 2020, DOI:10.32604/jrm.2020.09294

    Abstract Photocurable systems are more effective, faster and require less energy than conventional thermal curing methods. To facilitate the ongoing transition toward a biobased economy, photoactive compounds were synthesized from tall oil fatty acids (TOFA) which is a by-product from wood pulping. In this study, photoactive monomers were synthesized by two different chemical pathways using oleic acid and TOFA as raw materials. Firstly, double bonds present in TOFA were epoxidized, followed by epoxy ring-opening with acrylic acid which introduced photoactive functional groups into the fatty acid backbone. Intermediates and final products were analysed using titration methods (acidic value, epoxy value, iodine… More >

  • Open Access

    REVIEW

    Review of Cellulose Smart Material: Biomass Conversion Process and Progress on Cellulose-Based Electroactive Paper

    S.H. Hassan1,2, Lee Hwei Voon1*, T.S. Velayutham2*, Lindong Zhai3, Hyun Chan Kim3, Jaehwan Kim3

    Journal of Renewable Materials, Vol.6, No.1, pp. 1-25, 2018, DOI:10.7569/JRM.2017.634173

    Abstract Cellulose is a renewable biomass material and natural polymer which is abundantly available on Earth, and includes agricultural wastes, forestry residues, and woody materials. The excellent and smart characteristics of cellulose materials, such as lightweight, biocompatibility, biodegradability, high mechanical strength/stiffness and low thermal expansibility, have made cellulose a high-potential material for various industry applications. Cellulose has recently been discovered as a smart material in the electroactive polymers family which carries the name of cellulose-based electroactive paper (EAPap). The shear piezoelectricity in cellulose polymers is able to induce large displacement output, low actuation voltage, and low power consumption in the application… More >

  • Open Access

    ARTICLE

    Polyols Based on Poly(ethylene terephthalate) and Tall Oil: Perspectives for Synthesis and Production of Rigid Polyurethane Foams

    A. Ivdre1*, G.D. Soto2, U. Cabulis1

    Journal of Renewable Materials, Vol.4, No.4, pp. 285-293, 2016, DOI:10.7569/JRM.2016.634122

    Abstract This study presents the synthesis of novel polyols made from tall oil (TO) and poly(ethylene terephthalate) (PET) with different TO/PET molar ratios. Rigid polyurethane foams based on these synthesized polyols were obtained and characterized to evaluate polyols’ suitability for the development of light materials with insulating properties. The effect of TO/PET molar ratios on the physical, morphological and mechanical properties of the obtained foams, as well as their thermal insulation characteristics, were evaluated. Increasing amounts of PET in polyurethane foams resulted in higher compression strength and closed cell content, while water absorption was not affected. Results indicated that certain TO/PET… More >

Displaying 1-10 on page 1 of 7. Per Page