Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (86)
  • Open Access

    ARTICLE

    Synthesis of Green Adhesive with Tannin Extracted from Eucalyptus Bark for Potential Use in Wood Composites

    Medjda Amari1, Kamel Khimeche1,*, Abdelkader Hima2 , Redouane Chebout3, Abderahmane Mezroua1

    Journal of Renewable Materials, Vol.9, No.3, pp. 463-475, 2021, DOI:10.32604/jrm.2021.013680

    Abstract Recently, the exploitation of renewable plant resources in the formulation of adhesives is very promising for their availability at low coast, as well as their richness in biomolecules such as polyphenols. In this way, many research studies tannins extracted from different sources such as mimosa, quebracho, and pine have been the subject of very satisfactory recent studies. In this paper, a new complete characterization of the tannins extracted from the bark of eucalyptus globulus harvested from two regions in Algeria was achieved. The structural characterization enabled us to confirm the richness in condensed tannins, particularly in procyanidin More >

  • Open Access

    ARTICLE

    Water Repellency of Cellulosic Fibrous Mats Impregnated with Organic Solutions Based on Recycled Polystyrene

    Dafni Foti1, Costas Passialis1, Elias Voulgaridis1, Stergios Adamopoulos2,*

    Journal of Renewable Materials, Vol.9, No.1, pp. 85-96, 2021, DOI:10.32604/jrm.2021.011868

    Abstract Recycled polystyrene in combination with paraffin wax, alkyd resin, and gum rosin were used as components in formulations to investigate their water repellency when applied to cellulosic filter paper substrates. Polystyrene was used in concentration of 5, 10, 15 and 20%, alkyd resin and gum rosin of 5% each and paraffin wax of 0.5%. Totally, twenty four water repellent solutions were prepared. Water repellency was evaluated in terms of water absorption of the cellulosic fibrous mats. The relations between retention of solid substances of the formulations and grammage and water absorption of filter paper samples… More >

  • Open Access

    ARTICLE

    Degradation of Spent Radioactive Ion Exchange Resins and Its Mechanisms by Fenton Process

    Wendong Feng1,2, Jian Li2, Hongxiang An2, Yunhai Wang1,*

    Journal of Renewable Materials, Vol.8, No.10, pp. 1283-1293, 2020, DOI:10.32604/jrm.2020.011000

    Abstract Spent IERs are released during the operation and decommissioning of nuclear facilities. The safe and efficient treatment of spent IERs is an emergent problem in nuclear industry. IRN77 is a typical ion exchange resin widely used in many nuclear power plants. Fenton process can degrade organic resins and reduce the radioactive residues volume and the disposal cost significantly. In this work, the IRN77 resin was selected as a model ion exchange resin and its treatment via Fenton process was investigated. The influencing factors for resin degradation, including catalyst dosage, reaction time, initial pH, temperature and… More >

  • Open Access

    ARTICLE

    Impregnated Paper-Based Decorative Laminates Prepared from Lignin-Substituted Phenolic Resins

    Marion Thébault1, Ya Li1, Christopher Beuc1, Stephan Frömel-Frybort1,2, Edith-Martha Zikulnig-Rusch1, Larysa Kutuzova3, Andreas Kandelbauer3,*

    Journal of Renewable Materials, Vol.8, No.10, pp. 1181-1198, 2020, DOI:10.32604/jrm.2020.09755

    Abstract High Pressure Laminates (HPL) panels consist of stacks of self-gluing paper sheets soaked with phenol-formaldehyde (PF) resins. An important requirement for such PFs is that they must rapidly penetrate and saturate the paper pores. Partially substituting phenol with bio-based phenolic chemicals like lignin changes the physico-chemical properties of the resin and affects its ability to penetrate the paper. In this study, PF formulations containing different proportions of lignosulfonate and kraft lignin were used to prepare paper-based laminates. The penetration of a Kraft paper sheet was characterized by a recently introduced, new device measuring the conductivity… More >

  • Open Access

    ARTICLE

    Preparation of an Abrasive Grinding Wheel Based on Tannin Resin CrossLinked by Furfuryl Alcohol, Urea and Glyoxal

    Jinxing Li1, Jun Zhang1,*, Yunxia Zhou1, Zhaoling Zhou1, Hisham Essawy2, Xiaojian Zhou1,*, Guanben Du1

    Journal of Renewable Materials, Vol.8, No.9, pp. 1019-1032, 2020, DOI:10.32604/jrm.2020.012374

    Abstract Simple bio-based abrasive grinding wheel based on thermosetting resin matrix was developed starting with condensed tannin and furfuryl alcohol, which are mainly derived from forest and agricultural products like tree barks, wheat and crops. Fourier transform infrared spectra (FTIR) signified the acidic conditions are quiet efficient for the reaction of furfuryl alcohol, urea and glyoxal all together and the -CH2-NH- and -CH2-O-CH(OH)- groups are predominating in cross-linking of the tannin-furfuryl alcohol-urea-glyoxal (TFUG) resin. The strengthening contribution of the tannin was also confirmed by the preservation of its distinct crystallinity using X-ray diffraction (XRD). Differential scanning calorimetry… More >

  • Open Access

    ARTICLE

    Dissolution and Degradation of Spent Radioactive Cation Exchange Resin by Fenton Oxidation Combining Microwave

    Jiangbo Li1,2, Lielin Wang1,2,*, Hua Xie1,2, Xiaoyu Li1,2, Zhiqiang Feng1,2, Wenxiu Zhang1,2

    Energy Engineering, Vol.117, No.3, pp. 129-142, 2020, DOI:10.32604/EE.2020.010336

    Abstract This study introduced a significantly effective approach called the microwave-enhanced Fenton method to degrade spent radioactive cation exchange resin. Compared with the Fenton (99% after 180 min) and photo-Fenton (90% after 198 min) reactions, this unique microwave-enhanced Fenton reaction has the highest degradation rate for spent radioactive cation exchange resin degradation (98.55% after 60 min). Carbon dioxide, sulfate and small molecular compounds were produced in the degradation of cation exchange resin, as determined by XRD and FT-IR. A model for the microwave-enhanced Fenton degradation mechanism of cation exchange resin was constructed. Microwaves were implemented to More >

  • Open Access

    ARTICLE

    Component Optimization and Seepage Simulation Method of Resin Based Permeable Brick

    Xiaofu Wang1,*, Xiong Zhang1, Yan He2, Chunming Lian3

    Journal of Renewable Materials, Vol.8, No.8, pp. 947-968, 2020, DOI:10.32604/jrm.2020.011327

    Abstract In order to solve the problem of urban surface runoff, it is necessary to study permeable brick deeply. Tensile test and DMA test were used to study the binder material of permeable brick, and a material with the best mechanical properties was selected as the binder of resin based permeable brick; The permeable brick with single gradation and continuous gradation and porosity of 0.1–0.5 gradient is constructed by 3D modeling method. The particle composition and the seepage simulation results of permeable brick under different design parameters were analyzed; A resin-based permeable brick with micro-pores was… More >

  • Open Access

    ARTICLE

    The Effect of Fibre Length on Flexural and Dynamic Mechanical Properties of Pineapple Leaf Fibre Composites

    A. A. Mazlan1, M. T. H. Sultan1,2,3,*, S. N. A. Safri2, N. Saba2, A. U. M. Shah2, M. Jawaid2

    Journal of Renewable Materials, Vol.8, No.7, pp. 833-843, 2020, DOI:10.32604/jrm.2020.08724

    Abstract The present paper deals with the effect of loading different pineapple leaf fibre (PALF) length (short, mixed and long fibres) and their reinforcement for the fabrication of vinyl ester (VE) composites. Performance of PALF/VE composites was investigated through three-point bending flexural testing and viscoelastic (dynamic) mechanical properties through dynamic mechanical analysis (DMA). DMA results revealed that the long PALF/VE composites displayed better mechanical, damping factor and dynamic properties as compared to the short and mixed PALF/VE composites. The flexural strength and modulus of long PALF/VE composites were 113.5 MPa and 14.3 GPa, respectively. The storage More >

  • Open Access

    ARTICLE

    Effect of Phenolation, Lignin-Type and Degree of Substitution on the Properties of Lignin-Modified Phenol-Formaldehyde Impregnation Resins: Molecular Weight Distribution, Wetting Behavior, Rheological Properties and Thermal Curing Profiles

    Marion Thébault1, Larysa Kutuzova2, Sandra Jury1, Iris Eicher1, Edith-Martha Zikulnig-Rusch1, Andreas Kandelbauer2,*

    Journal of Renewable Materials, Vol.8, No.6, pp. 603-630, 2020, DOI:10.32604/jrm.2020.09616

    Abstract Here, the effects of substituting portions of fossil-based phenol in phenol formaldehyde resin by renewable lignin from two different sources are investigated using a factorial screening experimental design. Among the resins consumed by the wood-based industry, phenolics are one of the most important types used for impregnation, coating or gluing purposes. They are prepared by condensing phenol with formaldehyde (PF). One major use of PF is as matrix polymer for decorative laminates in exterior cladding and wet-room applications. Important requirements for such PFs are favorable flow properties (low viscosity), rapid curing behavior (high reactivity) and… More >

  • Open Access

    ARTICLE

    Bio-Based Hyperbranched Toughener From Tannic Acid and Its Enhanced Solvent-Free Epoxy Resin with High Performance

    Jie Xu1,3, Jiayao Yang1, Peng Lin2, Xiaohuan Liu1,*, Jinjie Zhang1, Shenyuan Fu1,*, Yuxun Tang2,*

    Journal of Renewable Materials, Vol.7, No.12, pp. 1333-1346, 2019, DOI:10.32604/jrm.2019.07905

    Abstract It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin; however, this has remained a huge challenge. Herein, an eco-friendly, low-cost, and facile-fabricated bio-based hyperbranched toughener, carboxylic acid-functionalized tannic acid (CATA), was successfully prepared and applicated to the preparation of solvent-free epoxy resins. The mechanical performance, morphology, structural characterization, and thermal characterization of toughened epoxy resin system were studied. The toughened epoxy resin system with only 1.0wt% CATA reached the highest impact strength, 111% higher than the neat epoxy resin system. Notably, the tensile strength and elongation at break of toughened More >

Displaying 51-60 on page 6 of 86. Per Page