Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (94)
  • Open Access

    PROCEEDINGS

    Influence of Resin Matrix Rigidity on the Ballistic Performance of PBO and Aramid Fiber Reinforced Composites

    Jia Liu, Yuwu Zhang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.011553

    Abstract The rigidity of the resin matrix is a critical factor affecting the impact resistance of composites [1]. However, the intrinsic relationship between resin matrix rigidity and ballistic performance remains insufficiently understood. To reveal the influence mechanisms of resin matrix rigidity on ballistic performance, this study compares the ballistic limits of PBO-140, PBO-200, Aramid III, and Aramid II fiber reinforced composites with resin matrices of different rigidities (epoxy resin, PX90, and PX30) through ballistic impact tests. The experimental results show that, the ballistic limit of composites with PX90 resin is higher than that of composites with… More >

  • Open Access

    ARTICLE

    Impact of Extreme Environmental Temperature on the Electric-Thermal Field Distribution of ERIP Bushing for 750 kV High Voltage Reactors

    Minjie Li1, Wanhao Shi1, Dingqian Yang2, Manman Yuan2, Jiabao Du2, Xuandong Liu1,*

    Energy Engineering, Vol.122, No.10, pp. 4297-4312, 2025, DOI:10.32604/ee.2025.066337 - 30 September 2025

    Abstract In Xinjiang, China, Oil-immersed paper bushings used in reactors are highly susceptible to discharge breakdown faults due to drastic fluctuations in environmental and oil temperatures. To mitigate this problem, oil-free and explosion-proof epoxy resin-impregnated paper (ERIP) bushings are recommended as replacements. This study develops a multi-physics(electric-thermal-fluid) coupling model for 750 kV high voltage reactors ERIP bushings. The model aims to comprehensively assess their thermal and electrical performance under extreme ambient temperatures ranging from −40°C to 90°C and oil temperatures varying from −10°C to 90°C. The results demonstrate that the bushing temperature rises consistently with increases… More >

  • Open Access

    ARTICLE

    Development of Flame Retardant Composite Based on Glucose-Citric Acid-Based Resin Reinforced by Walnut Shell Powder

    Zhenzhou Wang1, Rui Luo1, Wenqing Yang1, Seng Hua Lee2,*, Wei Chen Lum3, Longjiang Liu4, Xiaojian Zhou1, Jun Zhang1,*

    Journal of Renewable Materials, Vol.13, No.6, pp. 1229-1249, 2025, DOI:10.32604/jrm.2025.02024-0073 - 23 June 2025

    Abstract Highly flame-retardant bio-based composites were prepared in this study. Firstly, glucose-citric acid (GC) resin was synthesized through the interaction of glucose and citric acid derived from agricultural and forestry sources. Polyvinyl alcohol (PVA) served as a toughening agent, whereas walnut shell powder (WSP) functioned as a filler in the formulation of a thermosetting bio-based GC-PVA-WSP (GCPW) composite with GC resin. The findings demonstrated that boric acid increased the limited oxygen index (LOI) value of GCPW to 33%, while simultaneously diminishing its total smoke production (TSP) by 99.9%, and achieving a flame retardant index (FRI) of More > Graphic Abstract

    Development of Flame Retardant Composite Based on Glucose-Citric Acid-Based Resin Reinforced by Walnut Shell Powder

  • Open Access

    ARTICLE

    Polymer Resins Synthesized via the Michael 1,4-addition from Tall Oil Fatty Acids Using Various Epoxidation Techniques

    Aiga Ivdre*, Ralfs Pomilovskis, Arnis Abolins

    Journal of Renewable Materials, Vol.13, No.2, pp. 349-361, 2025, DOI:10.32604/jrm.2024.056820 - 20 February 2025

    Abstract Studies on the use of renewable materials for various applications, including polymers, have gained momentum due to global climate change and the push towards a circular economy. In this study, polymer resins were developed through Michael 1,4-addition. The precursors were synthesized from tall oil-based acetoacetates derived from epoxidized tall oil fatty acids or their methyl esters. Two different epoxidation methods were employed: enzymatic epoxidation of tall oil fatty acids and ion-exchange resin epoxidation of tall oil fatty acid methyl esters. Following oxirane opening and transesterification with trimethylolpropane, further esterification or transesterification was carried out to… More >

  • Open Access

    ARTICLE

    Comparison of Various Ion Exchange Resins for the Separation of Phenols in a Wood Pyrolysis-Based Biorefinery

    Kristine Meile1,*, Martins Romanovskis1,2, Thomas Nicol3, Neil Hindle3, Aivars Zhurinsh1

    Journal of Renewable Materials, Vol.12, No.12, pp. 2135-2152, 2024, DOI:10.32604/jrm.2024.056775 - 20 December 2024

    Abstract Fast pyrolysis of pre-treated birch wood in a super-heated steam environment produces a condensate rich in anhydrosugars. With the objective to obtain several product streams from this condensate, the possibility of extracting additional chemical species is explored, thus promoting the development of a pyrolysis-based biorefinery. In this work, the extraction and recovery of pyrolytic phenols from birch wood pyrolysis condensate was studied using ion exchange resins. With an aim to achieve effective phenol recovery, while obtaining high purity levoglucosan, basic ion exchange resins, both in OH and Cl form, as well as polystyrene-divinyl resins without functional… More > Graphic Abstract

    Comparison of Various Ion Exchange Resins for the Separation of Phenols in a Wood Pyrolysis-Based Biorefinery

  • Open Access

    ARTICLE

    Mechanical and Tribological Behavior of Graphene Oxide Supported Aramid Fiber Reinforced Epoxy Resin

    Yuanyuan Feng1, Bingli Pan1,*, Hongyu Liu1,2, Yuxuan Zhou1, Xiaofan Ding1, Xinyu Yuan1

    Journal of Polymer Materials, Vol.41, No.3, pp. 191-203, 2024, DOI:10.32604/jpm.2024.055558 - 30 September 2024

    Abstract In this paper, knitted aramid fiber (AF) was used as the support, and graphene oxide (GO) was loaded on the support by the polydopamine (PDA) method. Epoxy resin (EP) was poured to obtain composite materials. The tribological and mechanical properties of the composites were tested, and the wear surface of the composites was characterized by scanning electron microscopy (SEM) and three-dimensional morphology. The results show that knitted AF can markedly improve the mechanical properties of the composites. As a two-dimensional material, GO plays an effective lubrication role, and GO effectively enhances the tribological properties of… More >

  • Open Access

    ARTICLE

    Numerical Simulation of the Mechanical Stirring Process in a Tannin-Based Foaming Precursor Resin

    Lan Huang1, Wenbin Yuan1, Hisham Essawy2, Xiaojian Zhou3,*, Xinyi Chen3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2219-2234, 2024, DOI:10.32604/fdmp.2024.052445 - 23 September 2024

    Abstract Tannin foam is a new functional material. It can be widely applied to the automobile industry, construction industry, and packaging industry due to its wide range of raw materials, renewable, easily degraded, low cost and almost no pollution. Preparing tannin foam is a very complex process that includes high temperature, two phases, mechanical agitation, and phase change. To investigate the influence of the stirring velocity and paddle shape, simulation was calculated by making use of the volume of fluid (VOF) method and multiple reference frame (MRF) method in a three-dimensional flow field of tannin-based foaming… More > Graphic Abstract

    Numerical Simulation of the Mechanical Stirring Process in a Tannin-Based Foaming Precursor Resin

  • Open Access

    ARTICLE

    Thermo-Mechanical, Physico-Chemical, Morphological, and Fire Characteristics of Eco-Friendly Particleboard Manufactured with Phosphorylated Lignin Addition

    Apri Heri Iswanto1,*, Harisyah Manurung1, Asma Sohail2, Lee Seng Hua3,9, Petar Antov4, Deded Sarip Nawawi5, Sarah Latifah5, Dewi Shafa Kayla5,6, Sukma Surya Kusumah6, Muhammad Adly Rahandi Lubis6, Linda Makovická Osvaldová7, Mohd. Hazwan Hussin8, Rangabhashiyam Selvasembian9, Lum Wei Chen10, Puji Rahmawati Nurcahyani6, Nam Hun Kim11, Widya Fatriasari6

    Journal of Renewable Materials, Vol.12, No.7, pp. 1311-1341, 2024, DOI:10.32604/jrm.2024.052172 - 21 August 2024

    Abstract Lignin, lignosulfonate, and synthesized phosphorylated lignosulfonate were introduced as green fillers in citric acid-sucrose adhesives for bonding particleboard fabricated from areca leaf sheath (ALS). The characteristics of particleboards were compared to that of ultralow emitting formaldehyde (ULEF-UF). The fillers derived from Eucalyptus spp. kraft-lignin were added for flame retardancy enhancement. 10% of each lignin and modified lignin was added into the ULEF-UF and citric acid-sucrose bonded particleboards. Analyses applied to particleboards included thermal characteristics, X-ray diffraction analysis (XRD), morphological properties, Fourier transform infrared spectroscopy (FTIR), as well as physical, mechanical, and fire resistance characteristics of the… More > Graphic Abstract

    Thermo-Mechanical, Physico-Chemical, Morphological, and Fire Characteristics of Eco-Friendly Particleboard Manufactured with Phosphorylated Lignin Addition

  • Open Access

    ARTICLE

    Preparation of Environmentally Friendly Urea-Hexanediamine-Glyoxal (HUG) Resin Wood Adhesive

    Qianyu Zhang1,2,#, Shi Chen1,2,#, Long Cao1,2, Hong Lei3, Antonio Pizzi4, Xuedong Xi1,2,*, Guanben Du1,2

    Journal of Renewable Materials, Vol.12, No.2, pp. 235-244, 2024, DOI:10.32604/jrm.2023.029537 - 11 March 2024

    Abstract Using non-toxic, low-volatile glyoxal to completely replace formaldehyde for preparing urea-glyoxal (UG) resin adhesive is a hot research topic that could be of great interest for the wood industry. However, urea-glyoxal (UG) resins prepared by just using glyoxal instead of formaldehyde usually yields a lower degree of polymerization. This results in a poorer bonding performance and water resistance of UG resins. A good solution is to pre-react urea to preform polyurea molecules presenting already a certain degree of polymerization, and then to condense these with glyoxal to obtain a novel UG resin. Therefore, in this… More > Graphic Abstract

    Preparation of Environmentally Friendly Urea-Hexanediamine-Glyoxal (HUG) Resin Wood Adhesive

  • Open Access

    ARTICLE

    Study on Organic Fluorine Modified Cationic Acrylic Resin and its Application in Cathodic Electrodeposition Coatings

    LIJUN CHEN*, ZHEQING GONG, ZHENGRONG FU

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 157-164, 2023, DOI:10.32381/JPM.2023.40.3-4.3

    Abstract The organic fluorine modified/containing cationic acrylic resin is prepared via solution polymerization technique using hexafluorobutyl methacrylate (HFMA) along with butyl acrylate (BA), methyl methacrylate (MMA), styrene (St), dimethylaminoethyl methacrylate (DMAEMA) and hydroxy propyl methacrylate (HPMA) as the comonomers, proprylene glycol monomethyl ether (PGME) as the solvent, and 2, 2-Azo-bis-iso-butyronitrile (AIBN) as the initiator. The synthesized resin in which fluorine atom is introduced into the polymer chains. The cathodic electrodeposition (CED) coatings were prepared by mixing the synthesized resin and blocked isocyanate. The influence of the amount of organic fluorine on the resin and the resultant More >

Displaying 1-10 on page 1 of 94. Per Page