Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (74)
  • Open Access

    ARTICLE

    Modification of Wood by Tannin-Furfuryl Alcohol Resins–Effect on Dimensional Stability, Mechanical Properties and Decay Durability

    Mahdi Mubarok1,2, Christine Gérardin-Charbonnier1,*, Elham Azadeh1, Firmin Obounou Akong1, Stéphane Dumarçay1, Antonio Pizzi1, Philippe Gérardin1,*

    Journal of Renewable Materials, Vol.11, No.2, pp. 505-521, 2023, DOI:10.32604/jrm.2022.024872

    Abstract Furfurylation is a well-known wood modification technology. This paper studied the effect of tannin addition on the wood furfurylation. Three kinds of dicarboxylic acids, adipic acid, succinic acid, and tartaric acid, as well as glyoxal as a comparing agent, were used to catalyse the polymerisation of furanic or tannin-furanic solutions during wood modification. Impregnation of furanic or tannin-furanic solution at a certain concentration into the wood followed with curing at 103°C for a specific duration was performed for the wood modification. Different properties of the modified woods like dimensional stability, resistance of treatment to leaching, mechanical properties, decay durability against… More >

  • Open Access

    ARTICLE

    MUF Resins Improved by Citric Acid as Adhesives for Wood Veneer Panels

    Claudio Del Menezzi1,2,3, Antonio Pizzi2,*, Siham Amirou2, Xuedong Xi4,5

    Journal of Renewable Materials, Vol.11, No.2, pp. 539-553, 2023, DOI:10.32604/jrm.2022.024971

    Abstract

    This article presents the first applied results of using citric acid in combinations with a melamine-urea-formaldehyde (MUF) resin for bonding wood veneers. The chemical reactions involved are shown based on a MALDI ToF analysis of the reaction of the MUF resin with citric acid. The preliminary results of the physical and mechanical properties of the LVL prepared are also presented. Veneers from Populus sp were used to manufacture 5-layer laminated veneer lumber (LVL) of small dimensions. Five combinations of the amount of citric acid, MUF spread rate and pressing parameters were tested. LVL bonded with 20% of citric acid +… More > Graphic Abstract

    MUF Resins Improved by Citric Acid as Adhesives for Wood Veneer Panels

  • Open Access

    ARTICLE

    Fast Pressing Composite Using Tannin-Furfuryl Alcohol Resin and Vegetal Fibers Reinforcement

    Arnaud Nicollin1, Xinjun Li1, Pierre Girods1, Antonio Pizzi1,2,*, Yann Rogaume1

    Journal of Renewable Materials, Vol.1, No.4, pp. 311-316, 2013, DOI:10.7569/JRM.2013.634124

    Abstract Experimental investigations have been carried out on the potential use of tannin-furfuryl alcohol resin for biobased composites using vegetal fi ber reinforcement. Results showed that a mixture containing 54% furfuryl alcohol, 45% modifi ed quebracho extract and 0.9% paratoluenesulfonic acid as a catalyst yields a resin that can be used with a nonwoven fl ax fi ber mat to manufacture lightweight composites with good mechanical properties and a very short curing time with a regular hot press. The panels made were tested for tensile and fl exural modulus and strength, water resistance and thermo-degradation. More >

  • Open Access

    ARTICLE

    Synthesis of Resins with Ozonized Sunfl ower Oil and Radiata Pine Tannins

    M.Thébault*, A.Pizzi, E.Fredon

    Journal of Renewable Materials, Vol.1, No.4, pp. 242-252, 2013, DOI:10.7569/JRM.2013.634121

    Abstract Sunfl ower oil was subjected to a fl ow of compressed air containing ozone for different time periods. The addition of α-D-Glucose was used to increase the aldehyde content by reduction of the intermediate ozonides of the ozonation reaction. These new oils were analyzed by FTIR and GC-MS spectrometry, and their relative aldehyde groups content measured by the Henick method. They were then mixed with an aqueous solution of Radiata Pine tannin to form resins, subsequently analyzed by 13C NMR and MALDITOF mass spectrometry. Wood particleboards were then made using some of these resins as the adhesive, and their internal… More >

  • Open Access

    ARTICLE

    Development and Characterisation of Phenolic Foams with Phenol-Formaldehyde-Chestnut Tannins Resin

    M.C. Lagel1, A. Pizzi1,2, S. Giovando3, A. Celzard4

    Journal of Renewable Materials, Vol.2, No.3, pp. 220-229, 2014, DOI:10.7569/JRM.2014.634113

    Abstract With the depletion of fossil resources, tannin extracts can be a natural alternative to some synthetic products. Hydrolysable chestnut tannin extracts have been used to partially replace phenol in PF resins for phenolic rigid foams. Phenol-formaldehyde-chestnut tannin (PFT) phenolic foams were initially made from copolymerized PFT resins of different molar ratio. The PFT foams so prepared were tested for thermal conductivity, these being slightly worse than that of pure PF foams; and for mechanical and water absorption, these two properties being better than those of pure PF foams. Indeed, PF resins represent an important part of synthetic resins. They are… More >

  • Open Access

    ARTICLE

    Matrix-Assisted Laser Desorption-Ionization Time of Flight (MALDI-TOF) Mass Spectrometry of Phenol-FormaldehydeChestnut Tannin Resins

    M.C. Lagel1,*, A. Pizzi1,2, S. Giovando3

    Journal of Renewable Materials, Vol.2, No.3, pp. 207-219, 2014, DOI:10.7569/JRM.2014.634111

    Abstract Natural hydrolysable chestnut tannin extracts used to partially substitute phenol in Phenol-Formaldehyde (PF) resins for phenolic rigid foams were analysed by matrix-assisted desorption ionization time of fl ight (MALDI-TOF) mass spectrometry. PF only, chestnut only and PF-chestnut copolymerised oligomer types and distribution were determined. MALDI-TOF analyses of a PF control resin (with the same molar ratio) and of chestnut tannin extracts were performed in order to identify the peaks of molecular weights corresponding to copolymers of chestnut tannins with phenol and formaldehyde. More >

  • Open Access

    ARTICLE

    MALDI-ToF Analysis of Tannin-Resorcinol Resins by Alternative Aldehydes: Glyoxal and Glutaraldehyde

    A. Sauget1,*, X. Zhou1, A. Pizzi1,2

    Journal of Renewable Materials, Vol.2, No.3, pp. 186-200, 2014, DOI:10.7569/JRM.2013.634138

    Abstract Glyoxal and glutaraldehyde are two viable alternatives to formaldehyde for the preparation of tanninresorcinol-aldehyde adhesive but lead to less resistant glue joint. Tannin-resorcinol-glyoxal (TRG1) and tannin-resorcinol-glutaraldehyde (TRG2) resins have been prepared and analyzed by matrix-assisted laser desorption/ionization time of fl ight (MALDI-ToF) spectrometry to understand the chemical process behind the pre-curing of these resins and possibly the causes of this lower resistance. The analysis showed that TRG resins are not a simple mix of resorcinol-aldehydes oligomers and fl avonoids, but a much more complex combination of various species including tannin-aldehydes and tannin-resorcinol oligomers. More >

  • Open Access

    ARTICLE

    Tannin-Resorcinol-Formaldehyde Resin and Flax Fiber Biocomposites

    A. Sauget1,*, X. Zhou1, A. Pizzi1,2

    Journal of Renewable Materials, Vol.2, No.3, pp. 173-181, 2014, DOI:10.7569/JRM.2013.634128

    Abstract Tannin-resorcinol-formaldehyde (TRF) resin shows a good compatibility with natural fl ax fi bers and yields composite materials of good mechanical properties when using paraformaldehyde as a hardener. Different formulations, curing parameters and processes such as high-temperature curing in press or spray-drying have been explored in order to adapt this resin to composite manufacturing and to improve the properties of this new material. Additional testing has been performed on the TRF resin by thermomechanical analysis to observe its reactivity at different pH and with the use of different hardeners. More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Jatropha Curcas Oil-Based Alkyd Resins and Their Blends with Epoxy Resin

    Pronob Gogoi, Dhaneswar Das, Shyamalima Sharma, Swapan K. Dolui*

    Journal of Renewable Materials, Vol.3, No.2, pp. 151-159, 2015, DOI:10.7569/JRM.2014.634129

    Abstract Alkyd resins based on Jatropha curcas oil with different molar ratios of phthalic anhydride (PA) and maleic anhydride (MA) were prepared by alcoholysis followed by polyesterifi cation reaction. The progress of the reaction was traced by the determination of acid value at regular time intervals. From the kinetic study the extent of the reaction was found in the range of 52.4–61.2%. The prepared resins were blended with a commercially available fast-curing epoxy resin in order to improve the properties like curing time, chemical resistance, tensile strength, and thermal stability. The morphology study of the blends showed good compatibility of alkyd… More >

  • Open Access

    ARTICLE

    Mechanical Characterization of Bamboo and Glass Fiber Biocomposite Laminates

    William Eberts, Matthew T. Siniawski*, Timothy Burdiak, Nick Polito

    Journal of Renewable Materials, Vol.3, No.4, pp. 259-267, 2015, DOI:10.7569/JRM.2014.634137

    Abstract Single-ply biocomposite laminates were fabricated with two different woven fabrics and a bio-based resin using a wet layup technique at room temperature. A highly elastic, stockinette weave bamboo fiber fabric and a thicker, inelastic plain weave bamboo fabric were both investigated. The elastic fabric was pre-strained at 25% intervals, ranging from 0–100% of its original length. Samples made with E-Glass and S-Glass, two common glass fiber reinforcements, were also fabricated using the bioresin as benchmarks. The ultimate strength and modulus of elasticity characteristics of the composites were determined using the ASTM D3039/ D3039M-08 standard test method for determining the tensile… More >

Displaying 11-20 on page 2 of 74. Per Page