Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    A Study on a Magnesium-Based Layered Composite Used as a Flame Retardant for Phenolic Epoxy Resins

    Hongxiang Liu1,2,,*, Neng Xiong1,2, Songli Wang1,2, Wei Zhang1,2, Bo Yong1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 549-561, 2022, DOI:10.32604/fdmp.2022.017979

    Abstract

    The effects of a magnesium-based layered composite on the flammability of a phenolic epoxy resin (EP) are studied. In order to produce the required composite material, first, magnesium hydroxide, aluminum salt and deionized water are mixed into a reactor according to a certain proportion to induce a hydrothermal reaction; then, the feed liquid is filtered out using a solid-liquid separation procedure; finally, the material is dried and crushed. In order to evaluate its effects on the flammability of the EP, first, m-phenylenediamine is added to EP and vacuum defoamation is performed; then, EP is poured into a polytetrafluoroethylene mold, cooled… More >

  • Open Access

    REVIEW

    Recent Advances in Flame Retardant Bio-Based Benzoxazine Resins

    Hongliang Ding, Xin Wang*, Lei Song, Yuan Hu

    Journal of Renewable Materials, Vol.10, No.4, pp. 871-895, 2022, DOI:10.32604/jrm.2022.018150

    Abstract Benzoxazines have attracted wide attention from academics all over the world because of their unique properties. However, most of the production and preparation of benzoxazine resins depends on petroleum resources now, especially bisphenol A-based benzoxazine. Therefore, owing to the environmental impacts, the development of bio-based benzoxazines is gaining more and more interest to substitute petroleum-based benzoxazines. Similar to petroleum-based benzoxazines, most of bio-based benzoxazines suffer from flammability. Thus, it is necessary to endow bio-based benzoxazines with outstanding flame retardancy. The purpose of this review is to summarize the latest advance in flame retardant bio-based benzoxazines. First, three methods of the… More > Graphic Abstract

    Recent Advances in Flame Retardant Bio-Based Benzoxazine Resins

  • Open Access

    ARTICLE

    Degradation of Spent Radioactive Ion Exchange Resins and Its Mechanisms by Fenton Process

    Wendong Feng1,2, Jian Li2, Hongxiang An2, Yunhai Wang1,*

    Journal of Renewable Materials, Vol.8, No.10, pp. 1283-1293, 2020, DOI:10.32604/jrm.2020.011000

    Abstract Spent IERs are released during the operation and decommissioning of nuclear facilities. The safe and efficient treatment of spent IERs is an emergent problem in nuclear industry. IRN77 is a typical ion exchange resin widely used in many nuclear power plants. Fenton process can degrade organic resins and reduce the radioactive residues volume and the disposal cost significantly. In this work, the IRN77 resin was selected as a model ion exchange resin and its treatment via Fenton process was investigated. The influencing factors for resin degradation, including catalyst dosage, reaction time, initial pH, temperature and oxidant dosage were investigated and… More >

  • Open Access

    ARTICLE

    Impregnated Paper-Based Decorative Laminates Prepared from Lignin-Substituted Phenolic Resins

    Marion Thébault1, Ya Li1, Christopher Beuc1, Stephan Frömel-Frybort1,2, Edith-Martha Zikulnig-Rusch1, Larysa Kutuzova3, Andreas Kandelbauer3,*

    Journal of Renewable Materials, Vol.8, No.10, pp. 1181-1198, 2020, DOI:10.32604/jrm.2020.09755

    Abstract High Pressure Laminates (HPL) panels consist of stacks of self-gluing paper sheets soaked with phenol-formaldehyde (PF) resins. An important requirement for such PFs is that they must rapidly penetrate and saturate the paper pores. Partially substituting phenol with bio-based phenolic chemicals like lignin changes the physico-chemical properties of the resin and affects its ability to penetrate the paper. In this study, PF formulations containing different proportions of lignosulfonate and kraft lignin were used to prepare paper-based laminates. The penetration of a Kraft paper sheet was characterized by a recently introduced, new device measuring the conductivity between both sides of the… More >

  • Open Access

    ARTICLE

    Effect of Phenolation, Lignin-Type and Degree of Substitution on the Properties of Lignin-Modified Phenol-Formaldehyde Impregnation Resins: Molecular Weight Distribution, Wetting Behavior, Rheological Properties and Thermal Curing Profiles

    Marion Thébault1, Larysa Kutuzova2, Sandra Jury1, Iris Eicher1, Edith-Martha Zikulnig-Rusch1, Andreas Kandelbauer2,*

    Journal of Renewable Materials, Vol.8, No.6, pp. 603-630, 2020, DOI:10.32604/jrm.2020.09616

    Abstract Here, the effects of substituting portions of fossil-based phenol in phenol formaldehyde resin by renewable lignin from two different sources are investigated using a factorial screening experimental design. Among the resins consumed by the wood-based industry, phenolics are one of the most important types used for impregnation, coating or gluing purposes. They are prepared by condensing phenol with formaldehyde (PF). One major use of PF is as matrix polymer for decorative laminates in exterior cladding and wet-room applications. Important requirements for such PFs are favorable flow properties (low viscosity), rapid curing behavior (high reactivity) and sufficient self-adhesion capacity (high residual… More >

  • Open Access

    ARTICLE

    Bio-Based Hyperbranched Toughener From Tannic Acid and Its Enhanced Solvent-Free Epoxy Resin with High Performance

    Jie Xu1,3, Jiayao Yang1, Peng Lin2, Xiaohuan Liu1,*, Jinjie Zhang1, Shenyuan Fu1,*, Yuxun Tang2,*

    Journal of Renewable Materials, Vol.7, No.12, pp. 1333-1346, 2019, DOI:10.32604/jrm.2019.07905

    Abstract It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin; however, this has remained a huge challenge. Herein, an eco-friendly, low-cost, and facile-fabricated bio-based hyperbranched toughener, carboxylic acid-functionalized tannic acid (CATA), was successfully prepared and applicated to the preparation of solvent-free epoxy resins. The mechanical performance, morphology, structural characterization, and thermal characterization of toughened epoxy resin system were studied. The toughened epoxy resin system with only 1.0wt% CATA reached the highest impact strength, 111% higher than the neat epoxy resin system. Notably, the tensile strength and elongation at break of toughened epoxy resin systems increased moderately… More >

  • Open Access

    ARTICLE

    Generalized Stress Intensity Factors for Wedge-Shaped Defect in Human Tooth after Restored with Composite Resins

    Kyousuke Yamaguchi1, Nao-Aki Noda2, Ker-Kong Chen3, Kiyoshi Tajima3, Seiji Harada1, Xin Lan1

    Structural Durability & Health Monitoring, Vol.5, No.3, pp. 191-200, 2009, DOI:10.3970/sdhm.2009.005.191

    Abstract Wedge-shaped defects are frequently observed on the cervical region of the human tooth. Previously, most studies explained that improper tooth-brushing causes such defects. However, recent clinical observation suggested that the repeated stress due to occlusal force may induce the formation of these wedge-shaped defects. In this study, a two-dimensional human tooth model after a wedge-shaped defect is restored with the composite resin is analyzed by using the finite element method. To obtain the intensity of the singular stress accurately, a method of analysis is discussed for calculating generalized stress intensity factors, which control the singular stress around the corner of… More >

  • Open Access

    ARTICLE

    Preparation and Characterization of Alkyd Resins Based on Citrullus colocynthis Seed Oil

    Hassen Mohamed Sbihi1,*, Hamid Shaikh2, Lahssen El Blidi2, Imed Arbi Nehdi1, Ubair Abdus Samad2, Moufida Romdhani-Younes3, Saud Ibrahim Al-Resayes1

    Journal of Renewable Materials, Vol.6, No.6, pp. 651-661, 2018, DOI:10.7569/JRM.2018.634105

    Abstract In this study, different samples of alkyd resins based on Citrullus colocynthis seed oil (CCSO)—which has a high content of linoleic acid—were prepared as a renewable raw material. Short (I), medium (II), and long (III) alkyd resins were synthesized using oil, glycerol, and phthalic anhydride (PA) in different proportions. Prunus mahaleb seed oil (PMSO), which contains conjugated linolenic acid, was blended with CCSO in different proportions to examine the effect of PMSO on the film properties of alkyd resins (IV and V). All synthesized resins were characterized by FTIR and 1H NMR spectroscopic analysis. These resins were also cured by… More >

  • Open Access

    ARTICLE

    Polycondensation Resins by Lignin Reaction with (Poly) amines

    F. J. Santiago-Medina1, A. Pizzi1, 2*, M. C. Basso1, L. Delmotte3, S. Abdalla2

    Journal of Renewable Materials, Vol.5, No.5, pp. 388-399, 2017, DOI:10.7569/JRM.2017.634142

    Abstract The reaction of a desulphurized kraft lignin with hexamethylene diamine as a model of a polyamine has been investigated. For this purpose, guaiacol was also used as a lignin model compound and treated under similar conditions. Solid state CP-MAS 13C NMR, FTIR and MALDI-TOF spectroscopy studies revealed that polycondensation compounds leading to resins were obtained by the reaction of the amines with the phenolic and aliphatic hydroxy groups of lignin. Simultaneously a second reaction leading to the formation of ionic bonds between the same groups occurred. These new reactions have been clearly shown to involve several phenolic and alcohol hydroxyl… More >

  • Open Access

    ARTICLE

    Biomatrix from Stipa tenacissima L. and its Application in Fiberboard Using Date Palm Rachis as Filler

    Mohamed Ammar1, Ramzi Khiari2,3,4*, Mohamed Naceur Belgacem3,4*, Elimame Elaloui1

    Journal of Renewable Materials, Vol.5, No.2, pp. 116-123, 2017, DOI:10.7569/JRM.2016.634136

    Abstract The present study investigated the preparation of biomatrices from Stipa tenacissima L. and its valorization for fiberboard application. Resins were produced by extracting lignin from the Stipa tenacissima L. black liquor by soda process and combining it with glyoxal as crosslinking agent to produce lignin-glyoxal-resin (LGR). The matrix was characterized by several methods, such as FTIR and ATG/ATD, and then mixed with date palm rachis as reinforcing fibers in different proportions of 30 and 50% (w/w with respect to the matrix) to produce biodegradable composite materials. Then, their thermal and mechanical properties were determined, using differential scanning calorimetry (DSC) and… More >

Displaying 11-20 on page 2 of 24. Per Page