Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (80)
  • Open Access

    ARTICLE

    A Comprehensive Investigation of Machine Learning Feature Extraction and Classification Methods for Automated Diagnosis of COVID-19 Based on X-ray Images

    Mazin Abed Mohammed1, Karrar Hameed Abdulkareem2, Begonya Garcia-Zapirain3, Salama A. Mostafa4, Mashael S. Maashi5, Alaa S. Al-Waisy1, Mohammed Ahmed Subhi6, Ammar Awad Mutlag7, Dac-Nhuong Le8,9,*

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 3289-3310, 2021, DOI:10.32604/cmc.2021.012874 - 28 December 2020

    Abstract The quick spread of the Coronavirus Disease (COVID-19) infection around the world considered a real danger for global health. The biological structure and symptoms of COVID-19 are similar to other viral chest maladies, which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease. In this study, an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods (e.g., artificial neural network (ANN), support vector machine (SVM), linear kernel and radial… More >

  • Open Access

    ARTICLE

    Multi-Object Detection of Chinese License Plate in Complex Scenes

    Dan Liu1,3, Yajuan Wu1, Yuxin He2, Lu Qin2, Bochuan Zheng2,3,*

    Computer Systems Science and Engineering, Vol.36, No.1, pp. 145-156, 2021, DOI:10.32604/csse.2021.014646 - 23 December 2020

    Abstract Multi-license plate detection in complex scenes is still a challenging task because of multiple vehicle license plates with different sizes and classes in the images having complex background. The edge features of high-density distribution and the high curvature features of stroke turning of Chinese character are important signs to distinguish Chinese license plate from other objects. To accurately detect multiple vehicle license plates with different sizes and classes in complex scenes, a multi-object detection of Chinese license plate method based on improved YOLOv3 network was proposed in this research. The improvements include replacing the residual… More >

  • Open Access

    ARTICLE

    Automatic Detection of COVID-19 Using Chest X-Ray Images and Modified ResNet18-Based Convolution Neural Networks

    Ruaa A. Al-Falluji1,*, Zainab Dalaf Katheeth2, Bashar Alathari2

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1301-1313, 2021, DOI:10.32604/cmc.2020.013232 - 26 November 2020

    Abstract The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019 (COVID-19). The usage of sophisticated artificial intelligence technology (AI) and the radiological images can help in diagnosing the disease reliably and addressing the problem of the shortage of trained doctors in remote villages. In this research, the automated diagnosis of Coronavirus disease was performed using a dataset of X-ray images of patients with severe bacterial pneumonia, reported COVID-19 disease, and normal cases. The goal of the study is to analyze the achievements for medical image recognition… More >

  • Open Access

    ARTICLE

    Multi-Modality Video Representation for Action Recognition

    Chao Zhu1, Yike Wang1, Dongbing Pu1,Miao Qi1,*, Hui Sun2,*, Lei Tan3,*

    Journal on Big Data, Vol.2, No.3, pp. 95-104, 2020, DOI:10.32604/jbd.2020.010431 - 13 October 2020

    Abstract Nowadays, action recognition is widely applied in many fields. However, action is hard to define by single modality information. The difference between image recognition and action recognition is that action recognition needs more modality information to depict one action, such as the appearance, the motion and the dynamic information. Due to the state of action evolves with the change of time, motion information must be considered when representing an action. Most of current methods define an action by spatial information and motion information. There are two key elements of current action recognition methods: spatial information… More >

  • Open Access

    ARTICLE

    A Modified Method for Scene Text Detection by ResNet

    Shaozhang Niu1, *, Xiangxiang Li1, Maosen Wang1, Yueying Li2

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2233-2245, 2020, DOI:10.32604/cmc.2020.09471 - 16 September 2020

    Abstract In recent years, images have played a more and more important role in our daily life and social communication. To some extent, the textual information contained in the pictures is an important factor in understanding the content of the scenes themselves. The more accurate the text detection of the natural scenes is, the more accurate our semantic understanding of the images will be. Thus, scene text detection has also become the hot spot in the domain of computer vision. In this paper, we have presented a modified text detection network which is based on further… More >

  • Open Access

    ARTICLE

    Abnormal Behavior Detection and Recognition Method Based on Improved ResNet Model

    Huifang Qian1, Xuan Zhou1, *, Mengmeng Zheng1

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2153-2167, 2020, DOI:10.32604/cmc.2020.011843 - 16 September 2020

    Abstract The core technology in an intelligent video surveillance system is that detecting and recognizing abnormal behaviors timely and accurately. The key breakthrough point in recognizing abnormal behaviors is how to obtain the effective features of the picture, so as to solve the problem of recognizing them. In response to this difficulty, this paper introduces an adjustable jump link coefficients model based on the residual network. The effective coefficients for each layer of the network can be set after using this model to further improving the recognition accuracy of abnormal behavior. A convolution kernel of 1×1… More >

  • Open Access

    ARTICLE

    Vehicle Target Detection Method Based on Improved SSD Model

    Guanghui Yu1, Honghui Fan1, Hongyan Zhou1, Tao Wu1, Hongjin Zhu1, *

    Journal on Artificial Intelligence, Vol.2, No.3, pp. 125-135, 2020, DOI:10.32604/jai.2020.010501 - 15 July 2020

    Abstract When we use traditional computer vision Inspection technology to locate the vehicles, we find that the results were unsatisfactory, because of the existence of diversified scenes and uncertainty. So, we present a new method based on improved SSD model. We adopt ResNet101 to enhance the feature extraction ability of algorithm model instead of the VGG16 used by the classic model. Meanwhile, the new method optimizes the loss function, such as the loss function of predicted offset, and makes the loss function drop more smoothly near zero points. In addition, the new method improves cross entropy More >

  • Open Access

    ARTICLE

    Coverless Image Steganography Based on Image Segmentation

    Yuanjing Luo1, Jiaohua Qin1, *, Xuyu Xiang1, Yun Tan1, Zhibin He1, Neal N. Xiong2

    CMC-Computers, Materials & Continua, Vol.64, No.2, pp. 1281-1295, 2020, DOI:10.32604/cmc.2020.010867 - 10 June 2020

    Abstract To resist the risk of the stego-image being maliciously altered during transmission, we propose a coverless image steganography method based on image segmentation. Most existing coverless steganography methods are based on whole feature mapping, which has poor robustness when facing geometric attacks, because the contents in the image are easy to lost. To solve this problem, we use ResNet to extract semantic features, and segment the object areas from the image through Mask RCNN for information hiding. These selected object areas have ethical structural integrity and are not located in the visual center of the… More >

  • Open Access

    ARTICLE

    Empirical Comparisons of Deep Learning Networks on Liver Segmentation

    Yi Shen1, Victor S. Sheng1, 2, *, Lei Wang1, Jie Duan1, Xuefeng Xi1, Dengyong Zhang3, Ziming Cui1

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1233-1247, 2020, DOI:10.32604/cmc.2020.07450

    Abstract Accurate segmentation of CT images of liver tumors is an important adjunct for the liver diagnosis and treatment of liver diseases. In recent years, due to the great improvement of hard device, many deep learning based methods have been proposed for automatic liver segmentation. Among them, there are the plain neural network headed by FCN and the residual neural network headed by Resnet, both of which have many variations. They have achieved certain achievements in medical image segmentation. In this paper, we firstly select five representative structures, i.e., FCN, U-Net, Segnet, Resnet and Densenet, to More >

  • Open Access

    ARTICLE

    Text Detection and Recognition for Natural Scene Images Using Deep Convolutional Neural Networks

    Xianyu Wu1, Chao Luo1, Qian Zhang2, Jiliu Zhou1, Hao Yang1, 3, *, Yulian Li1

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 289-300, 2019, DOI:10.32604/cmc.2019.05990

    Abstract Words are the most indispensable information in human life. It is very important to analyze and understand the meaning of words. Compared with the general visual elements, the text conveys rich and high-level moral information, which enables the computer to better understand the semantic content of the text. With the rapid development of computer technology, great achievements have been made in text information detection and recognition. However, when dealing with text characters in natural scene images, there are still some limitations in the detection and recognition of natural scene images. Because natural scene image has… More >

Displaying 71-80 on page 8 of 80. Per Page