Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (60)
  • Open Access

    ABSTRACT

    SimulationDB -- advanced, intelligent database system for casting simulation results

    P. Malinowski1, J. S. Suchy2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.1, pp. 27-36, 2010, DOI:10.3970/icces.2010.015.027

    Abstract Many foundries and Scientific Institutes which are using simulation programs, they generate a huge amount of data. These data are mainly simulation results and various analysis especially results of research work investigations. This huge amount of data growing to hundreds of terabytes per year in Poland and thousands terabytes per year in other European countries altogether.
    There is no special informatics tools, systems to manage these simulation results, to archive them and to find information in easy way. To solve this inconvenience, there is a need to build modern, intelligent informatics system based on Client – Server architecture using Relational… More >

  • Open Access

    ABSTRACT

    Fringe Pattern Analysis: Some Results and Discussions (III)

    Kemao Qian

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.1, pp. 4-4, 2019, DOI:10.32604/icces.2019.05557

    Abstract Fringe-based measurement techniques provide an accurate, straightforward and convenient means for optical metrology and experimental mechanics [1]. Consequently, fringe pattern analysis is an important issue. We have reported our works in this conference in 2011 [2] and 2014 [3]. In this paper, our recent developments since 2014 are introduced, as listed below:
    1. Among various fringe patterns, carrier fringe is more convenient to use but more difficult to characterize. We unified several prominent carrier fringe analysis techniques for deeper understanding. The background removal and the influence of high-order harmonics are also studied.
    2. Moving fringe analysis techniques from methodology to… More >

  • Open Access

    ARTICLE

    Variable Viscosity and Density Biofilm Simulations using an Immersed Boundary Method, Part I: Numerical Scheme and Convergence Results

    Jason F. Hammond1, Elizabeth J. Stewart2, John G. Younger3, Michael J.Solomon2, David M. Bortz4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.3, pp. 295-340, 2014, DOI:10.32604/cmes.2014.098.295

    Abstract The overall goal of this work is to develop a numerical simulation which correctly describes a bacterial biofilm fluid-structure interaction and separation process. In this, the first of a two-part effort, we fully develop a convergent scheme and provide numerical evidence for the method order as well as a full 3D separation simulation. We use an immersed boundary-based method (IBM) to model and simulate a biofilm with density and viscosity values different from than that of the surrounding fluid. The simulation also includes breakable springs connecting the bacteria in the biofilm which allows the inclusion of erosion and detachment into… More >

  • Open Access

    ARTICLE

    Sustained Drug Release from Contact Lenses

    J.A.Ferreira2,3, P. Oliveira1, P.M. Silva4, A. Carreira5,3, J.N. Murta6

    CMES-Computer Modeling in Engineering & Sciences, Vol.60, No.2, pp. 151-180, 2010, DOI:10.3970/cmes.2010.060.151

    Abstract This paper focuses on the release of an ophthalmic drug (flurbiprofen) from a loaded copolymer where the drug is simultaneously dispersed in the polymeric matrix and entrapped in particles. The copolymer is based in 2-hydroxyethyl methacrylate co-methacrylic acid and silicone is used to prepare the loaded particles. A mathematical model to simulate the drug release is proposed and a qualitative analysis is performed. In vitro experimental results are compared with simulation results. Contact lens made from the presented copolymer are expected to deliver drug at therapeutical levels for a few days. More >

  • Open Access

    ARTICLE

    Numerical Results for a Colocated Finite-Volume Scheme on Voronoi Meshes for Navier-Stokes Equations

    V.C. Mariani1, E.E.M. Alonso2, S. Peters3

    CMES-Computer Modeling in Engineering & Sciences, Vol.29, No.1, pp. 15-28, 2008, DOI:10.3970/cmes.2008.029.015

    Abstract An application of Newton's method for linearization of advective terms given by the discretization on unstructured Voronoi meshes for the incompressible Navier-Stokes equations is proposed and evaluated in this article. One of the major advantages of the unstructured approach is its application to very complex geometrical domains and the mesh is adaptable to features of the flow. Moreover, in this work comparisons with the literature results in bi-dimensional lid-driven cavities for different Reynolds numbers allow us to assess the numerical properties of the new proposed finite-volume scheme. Results for the components of the velocity, and the pressure collocated at the… More >

  • Open Access

    ARTICLE

    Consolidation of a Soft Clay Composite: Experimental Results and Computational Estimates

    A.P.S. Selvadurai1, H. Ghiabi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.1, pp. 53-74, 2008, DOI:10.3970/cmes.2008.023.053

    Abstract This paper deals with the problem of the consolidation of a composite consisting of alternate layers of soft clay and a granular material. A series of experiments were conducted on components to develop the constitutive models that can be implemented in a computational approach. The constitutive response of the soft clay is represented by a poro-elasto-plastic Cam clay-based model and the granular medium by an elasto-plastic model with a Drucker-Prager type failure criterion and a non-associated flow rule. The computational poro-elasto-plastic model is used to calibrate the experimental results derived from the one-dimensional tests and to establish the influence of… More >

  • Open Access

    ARTICLE

    Acoustic Scattering in Prolate Spheroidal Geometry via Vekua Tranformation -- Theory and Numerical Results

    L.N. Gergidis, D. Kourounis, S. Mavratzas, A. Charalambopoulos1

    CMES-Computer Modeling in Engineering & Sciences, Vol.21, No.2, pp. 157-176, 2007, DOI:10.3970/cmes.2007.021.157

    Abstract A new complete set of scattering eigensolutions of Helmholtz equation in spheroidal geometry is constructed in this paper. It is based on the extension to exterior boundary value problems of the well known Vekua transformation pair, which connects the kernels of Laplace and Helmholtz operators. The derivation of this set is purely analytic. It avoids the implication of the spheroidal wave functions along with their accompanying numerical deficiencies. Using this novel set of eigensolutions, we solve the acoustic scattering problem from a soft acoustic spheroidal scatterer, by expanding the scattered field in terms of it. Two approaches concerning the determination… More >

  • Open Access

    ARTICLE

    Comparison and a Possible Source of Disagreement between Experimental and Numerical Results in a Czochralski Model

    V. Haslavsky, E. Miroshnichenko, E. Kit, A. Yu. Gelfgat

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 209-234, 2013, DOI:10.3970/fdmp.2013.009.209

    Abstract Experimental and numerical observations of oscillatory instability of melt flow in a Czochralski model are compared, and a disagreement observed at small crystal dummy rotation rates is addressed. To exclude uncertainties connected with flow along the free surface, the latter is covered by a no-slip thermally insulating ring. Experiments reveal an appearance of oscillations at temperature differences smaller than the numerically predicted critical ones. At the same time, a steep increase of the oscillations amplitude is observed just beyond the computed threshold values. By increasing the dummy rotation gradually, we are able to qualitatively confirm the numerically predicted flow destabilization.… More >

  • Open Access

    ARTICLE

    Modeling a Discontinuous CVD Coating Process: II. Detailed Simulation Results

    Joseph G. Lawrence, John P. Dismukes, Arunan Nadarajah1

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.3, pp. 255-264, 2007, DOI:10.3970/fdmp.2007.003.255

    Abstract The atmospheric chemical vapor deposition process on continuous glass sheets is a well developed one and the parameters that affect it are relatively well understood. When this process is converted to coat discrete glass plates it introduces a new variable, the gap between the glass plates, which can significantly impact the quality of the coatings. In this study a 2D pseudo steady state model of the process was developed to study the effect of the gap, and the ratio of outlet to inlet gas flow rates (called the bias), on the coating quality. The model was solved with the commercially… More >

  • Open Access

    ARTICLE

    Some Topological Indices Computing Results If Archimedean Lattices L(4,6,12)

    Kang Qiong1,*, Xinting Li2

    CMC-Computers, Materials & Continua, Vol.58, No.1, pp. 121-133, 2019, DOI:10.32604/cmc.2019.03723

    Abstract The introduction of graph-theoretical structure descriptors represents an important step forward in the research of predictive models in chemistry and falls within the lines of the increasing use of mathematical and computational methods in contemporary chemistry. The basis for these models is the study of the quantitative structure-property and structure-activity relationship. In this paper, we investigate Great rhom-bitrihexagonal which is a kind of dodecagon honeycomb net-work covered by quadrangle and hexagon. Many topological indexes of Great rhom-bitrihexagonal have being investigated, such as sum-connectivity index, atom-bond connectivity index, geometric-arithmetic index, fifth, harmonic index, Randić connectivity index, first Zagreb index, second Zagreb… More >

Displaying 51-60 on page 6 of 60. Per Page