Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (101)
  • Open Access

    ARTICLE

    Semi-GSGCN: Social Robot Detection Research with Graph Neural Network

    Xiujuan Wang1, Qianqian Zheng1, *, Kangfeng Zheng2, Yi Sui1, Jiayue Zhang1

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 617-638, 2020, DOI:10.32604/cmc.2020.011165

    Abstract Malicious social robots are the disseminators of malicious information on social networks, which seriously affect information security and network environments. Efficient and reliable classification of social robots is crucial for detecting information manipulation in social networks. Supervised classification based on manual feature extraction has been widely used in social robot detection. However, these methods not only involve the privacy of users but also ignore hidden feature information, especially the graph feature, and the label utilization rate of semi-supervised algorithms is low. Aiming at the problems of shallow feature extraction and low label utilization rate in existing social network robot detection… More >

  • Open Access

    ARTICLE

    Synchronization of Robot Manipulators Actuated By Induction Motors with Velocity Estimator

    Felipe J. Torres1,*, Gerardo V. Guerrero2, Carlos D. García2, Ricardo Zavala-Yoe3, Mario A. García1, Adolfo R. López4

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.2, pp. 609-630, 2019, DOI:10.32604/cmes.2019.07153

    Abstract A complete modeling (including the actuator dynamics) of a robot manipulator that uses three-phase induction motors is presented in this paper. A control scheme is designed to synchronize robot manipulators actuated by induction motors under a masterslave scheme in the case where the joint velocity of the slave robots is estimated. All of the research on the synchronization of robot manipulators assumes the use of ideal actuators to drive the joints; for that reason, in this work, a three-phase induction motor is considered to be a direct-drive actuator for each joint. An entire model of the mated system is obtained… More >

  • Open Access

    ARTICLE

    Fabrication of Porous Scaffolds for Bone Tissue Engineering Using a 3-D Robotic System: Comparison with Conventional Scaffolds Fabricated by Particulate Leaching

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 179-180, 2006, DOI:10.32604/mcb.2006.003.179

    Abstract This article has no abstract. More >

  • Open Access

    ABSTRACT

    Modeling and Robot Grasping of Deformable Shell-like and Planar Objects

    Yan-Bin Jia

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.2, pp. 43-44, 2011, DOI:10.3970/icces.2011.016.043

    Abstract The robot hand applying force on a deformable object will result in a changing wrench space due to the varying shape and normal of the contact area. Design and analysis of a manipulation strategy thus depend on reliable modeling of the object's deformations as actions are performed. The first part of this talk is concerned with modeling of shell-like objects grasped by a robot hand. We present a formulation of extensional, shearing, and bending strains in terms of geometric invariants including the principal curvatures and vectors, and their related directional and covariant derivatives. A computational procedure is then offered for… More >

  • Open Access

    ABSTRACT

    Control of Walking Robot by Inverse Dynamics of Link Mechanisms Using FEM

    S. Okamoto1, H. Noguchi2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.4, pp. 131-136, 2007, DOI:10.3970/icces.2007.002.131

    Abstract This paper presents a control of walking robot by using inverse dynamics of link mechanisms, which has already been proposed and applied in several in-plane motions. In this method, FEM is used for the discretization of equations of motion. This method calculates nodal forces by evaluating equations of motion in a matrix form, and thus information from the entire system can be handled efficiently, and the torques input to each joint of link mechanisms to achieve required motion are calculated easily. This method is suitable to the feed-forward control of closed-loop or continuously link mechanisms. In this paper, this inverse… More >

  • Open Access

    ARTICLE

    Research on Robot Control Technology Based on Vision Localization

    Ruijiao Yin1, Jie Yang1,*

    Journal on Artificial Intelligence, Vol.1, No.1, pp. 37-44, 2019, DOI:10.32604/jai.2019.05815

    Abstract Based on the understanding of machine vision localization technology at home and abroad, this paper outlines the overall design of the system, and analyses the working principle and workflow of the robot with vision system in workpiece grinding. The hardware design of the system is introduced. The process of image processing is analyzed in detail, and the results of image processing are given. The basic parameters of camera imaging are taken as internal parameters. The camera calibration is obtained by rotation matrix R and translation parameter T. The coordinate transformation of camera coordinate system and world coordinate system is analyzed.… More >

  • Open Access

    REVIEW

    Overview: Mechanism and Control of a Prosthetic Arm

    Tushar Kulkarni1,2, Rashmi Uddanwadiker1

    Molecular & Cellular Biomechanics, Vol.12, No.3, pp. 147-195, 2015, DOI:10.3970/mcb.2015.012.147

    Abstract Continuous growth in industrialization and lack of awareness in safety parameters the cases of amputations are growing. The search of safer, simpler and automated prosthetic arms for managing upper limbs is expected. Continuous efforts have been made to design and develop prosthetic arms ranging from simple harness actuated to automated mechanisms with various control options. However due the cost constraints, the automated prosthetic arms are still out of the reach of needy people. Recent data have shown that there is a wide scope to develop a low cost and light weight upper limb prosthesis. This review summarizes the various designs… More >

  • Open Access

    ARTICLE

    Modelling and Backstepping Motion Control of the Aircraft Skin Inspection Robot

    Junjun Jiang1, Congqing Wang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.1, pp. 105-121, 2019, DOI:10.32604/cmes.2019.06277

    Abstract Aircraft skin health concerns whether the aircraft can fly safely. In this paper, an improved mechanical structure of the aircraft skin inspection robot was introduced. Considering that the aircraft skin surface is a curved environment, we assume that the curved environment is equivalent to an inclined plane with a change in inclination. Based on this assumption, the Cartesian dynamics model of the robot is established using the Lagrange method. In order to control the robot’s movement position accurately, a position backstepping control scheme for the aircraft skin inspection robot was presented. According to the dynamic model and taking into account… More >

  • Open Access

    ARTICLE

    Trajectory Planning of High Precision Collaborative Robots

    Tuanjie Li1,*, Yan Zhang1, Jiaxing Zhou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 583-598, 2019, DOI:10.31614/cmes.2018.04891

    Abstract In order to satisfy the high efficiency and high precision of collaborative robots, this work presents a novel trajectory planning method. First, in Cartesian space, a novel velocity look-ahead control algorithm and a cubic polynomial are combined to construct the end-effector trajectory of robots. Then, the joint trajectories can be obtained through the inverse kinematics. In order to improve the smoothness and stability in joint space, the joint trajectories are further adjusted based on the velocity look-ahead control algorithm and quintic B-spline. Finally, the proposed trajectory planning method is tested on a 4-DOF serial collaborative robot. The experimental results indicate… More >

  • Open Access

    ARTICLE

    Establishment and Stability Analysis of a Hybrid Viscoelastic Model Based on Meshless for Surgical Robot System

    Yidong Bao1,2, Dongmei Wu1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.4, pp. 277-294, 2014, DOI:10.3970/cmes.2014.100.277

    Abstract Aiming at the shortcomings of mass-spring model, this paper, on the basis of preliminary studies, established a new viscoelastic soft tissue model based on meshless structure. The model is consisted of a large quantity of filled spheres, with every three spheres being connected by a spring and a Kelvin structure, which can further enhance the real-time virtual simulation operability while ensure the viscoelasticity of basic model. The stress relaxation and creep equation of the model can be derived from formula derivation. Through setting different parameters to the filled spheres, this model, with certain universal property, can create a virtual liver,… More >

Displaying 91-100 on page 10 of 101. Per Page