Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (55)
  • Open Access

    ARTICLE

    Face-Pedestrian Joint Feature Modeling with Cross-Category Dynamic Matching for Occlusion-Robust Multi-Object Tracking

    Qin Hu, Hongshan Kong*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-31, 2026, DOI:10.32604/cmc.2025.069078 - 10 November 2025

    Abstract To address the issues of frequent identity switches (IDs) and degraded identification accuracy in multi object tracking (MOT) under complex occlusion scenarios, this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling. By constructing a joint tracking model centered on “intra-class independent tracking + cross-category dynamic binding”, designing a multi-modal matching metric with spatio-temporal and appearance constraints, and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy, this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion, cross-camera tracking, and crowded environments. Experiments… More >

  • Open Access

    REVIEW

    Next-Generation Lightweight Explainable AI for Cybersecurity: A Review on Transparency and Real-Time Threat Mitigation

    Khulud Salem Alshudukhi1,*, Sijjad Ali2, Mamoona Humayun3,*, Omar Alruwaili4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3029-3085, 2025, DOI:10.32604/cmes.2025.073705 - 23 December 2025

    Abstract Problem: The integration of Artificial Intelligence (AI) into cybersecurity, while enhancing threat detection, is hampered by the “black box” nature of complex models, eroding trust, accountability, and regulatory compliance. Explainable AI (XAI) aims to resolve this opacity but introduces a critical new vulnerability: the adversarial exploitation of model explanations themselves. Gap: Current research lacks a comprehensive synthesis of this dual role of XAI in cybersecurity—as both a tool for transparency and a potential attack vector. There is a pressing need to systematically analyze the trade-offs between interpretability and security, evaluate defense mechanisms, and outline a… More >

  • Open Access

    ARTICLE

    Robustness and Performance Comparison of Generative AI Time Series Anomaly Detection under Noise

    Jeongsu Park1, Moohong Min2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3913-3948, 2025, DOI:10.32604/cmes.2025.072261 - 23 December 2025

    Abstract Time series anomaly detection is critical in domains such as manufacturing, finance, and cybersecurity. Recent generative AI models, particularly Transformer- and Autoencoder-based architectures, show strong accuracy but their robustness under noisy conditions is less understood. This study evaluates three representative models—AnomalyTransformer, TranAD, and USAD—on the Server Machine Dataset (SMD) and cross-domain benchmarks including the Soil Moisture Active Passive (SMAP) dataset, the Mars Science Laboratory (MSL) dataset, and the Secure Water Treatment (SWaT) testbed. Seven noise settings (five canonical, two mixed) at multiple intensities are tested under fixed clean-data training, with variations in window, stride, and More > Graphic Abstract

    Robustness and Performance Comparison of Generative AI Time Series Anomaly Detection under Noise

  • Open Access

    ARTICLE

    Spectrotemporal Deep Learning for Heart Sound Classification under Clinical Noise Conditions

    Akbare Yaqub1,2, Muhammad Sadiq Orakzai2, Muhammad Farrukh Qureshi3,4, Zohaib Mushtaq5, Imran Siddique6,7, Taha Radwan8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2503-2533, 2025, DOI:10.32604/cmes.2025.071571 - 26 November 2025

    Abstract Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, necessitating efficient diagnostic tools. This study develops and validates a deep learning framework for phonocardiogram (PCG) classification, focusing on model generalizability and robustness. Initially, a ResNet-18 model was trained on the PhysioNet 2016 dataset, achieving high accuracy. To assess real-world viability, we conducted extensive external validation on the HLS-CMDS dataset. We performed four key experiments: (1) Fine-tuning the PhysioNet-trained model for binary (Normal/Abnormal) classification on HLS-CMDS, achieving 88% accuracy. (2) Fine-tuning the same model for multi-class classification (Normal, Murmur, Extra Sound, Rhythm Disorder), which yielded… More >

  • Open Access

    ARTICLE

    How Robust Are Language Models against Backdoors in Federated Learning?

    Seunghan Kim1,#, Changhoon Lim2,#, Gwonsang Ryu3, Hyunil Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2617-2630, 2025, DOI:10.32604/cmes.2025.071190 - 26 November 2025

    Abstract Federated Learning enables privacy-preserving training of Transformer-based language models, but remains vulnerable to backdoor attacks that compromise model reliability. This paper presents a comparative analysis of defense strategies against both classical and advanced backdoor attacks, evaluated across autoencoding and autoregressive models. Unlike prior studies, this work provides the first systematic comparison of perturbation-based, screening-based, and hybrid defenses in Transformer-based FL environments. Our results show that screening-based defenses consistently outperform perturbation-based ones, effectively neutralizing most attacks across architectures. However, this robustness comes with significant computational overhead, revealing a clear trade-off between security and efficiency. By explicitly More >

  • Open Access

    ARTICLE

    DSGNN: Dual-Shield Defense for Robust Graph Neural Networks

    Xiaohan Chen1, Yuanfang Chen1,*, Gyu Myoung Lee2, Noel Crespi3, Pierluigi Siano4

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1733-1750, 2025, DOI:10.32604/cmc.2025.067284 - 29 August 2025

    Abstract Graph Neural Networks (GNNs) have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models, such as Large Language Models (LLMs), to enhance structural reasoning, knowledge retrieval, and memory management. The expansion of their application scope imposes higher requirements on the robustness of GNNs. However, as GNNs are applied to more dynamic and heterogeneous environments, they become increasingly vulnerable to real-world perturbations. In particular, graph data frequently encounters joint adversarial perturbations that simultaneously affect both structures and features, which are significantly more challenging than isolated attacks. These disruptions, caused… More >

  • Open Access

    ARTICLE

    Transmission Facility Detection with Feature-Attention Multi-Scale Robustness Network and Generative Adversarial Network

    Yunho Na1, Munsu Jeon1, Seungmin Joo1, Junsoo Kim1, Ki-Yong Oh1,2,*, Min Ku Kim1,2,*, Joon-Young Park3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1013-1044, 2025, DOI:10.32604/cmes.2025.066447 - 31 July 2025

    Abstract This paper proposes an automated detection framework for transmission facilities using a feature-attention multi-scale robustness network (FAMSR-Net) with high-fidelity virtual images. The proposed framework exhibits three key characteristics. First, virtual images of the transmission facilities generated using StyleGAN2-ADA are co-trained with real images. This enables the neural network to learn various features of transmission facilities to improve the detection performance. Second, the convolutional block attention module is deployed in FAMSR-Net to effectively extract features from images and construct multi-dimensional feature maps, enabling the neural network to perform precise object detection in various environments. Third, an… More >

  • Open Access

    ARTICLE

    Application and Performance Optimization of SLHS-TCN-XGBoost Model in Power Demand Forecasting

    Tianwen Zhao1, Guoqing Chen2,3, Cong Pang4, Piyapatr Busababodhin3,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2883-2917, 2025, DOI:10.32604/cmes.2025.066442 - 30 June 2025

    Abstract Existing power forecasting models struggle to simultaneously handle high-dimensional, noisy load data while capturing long-term dependencies. This critical limitation necessitates an integrated approach combining dimensionality reduction, temporal modeling, and robust prediction, especially for multi-day forecasting. A novel hybrid model, SLHS-TCN-XGBoost, is proposed for power demand forecasting, leveraging SLHS (dimensionality reduction), TCN (temporal feature learning), and XGBoost (ensemble prediction). Applied to the three-year electricity load dataset of Seoul, South Korea, the model’s MAE, RMSE, and MAPE reached 112.08, 148.39, and 2%, respectively, which are significantly reduced in MAE, RMSE, and MAPE by 87.37%, 87.35%, and 87.43%… More >

  • Open Access

    ARTICLE

    A Robust Image Watermarking Based on DWT and RDWT Combined with Möbius Transformations

    Atheer Alrammahi1,2, Hedieh Sajedi1,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 887-918, 2025, DOI:10.32604/cmc.2025.063866 - 09 June 2025

    Abstract Ensuring digital media security through robust image watermarking is essential to prevent unauthorized distribution, tampering, and copyright infringement. This study introduces a novel hybrid watermarking framework that integrates Discrete Wavelet Transform (DWT), Redundant Discrete Wavelet Transform (RDWT), and Möbius Transformations (MT), with optimization of transformation parameters achieved via a Genetic Algorithm (GA). By combining frequency and spatial domain techniques, the proposed method significantly enhances both the imperceptibility and robustness of watermark embedding. The approach leverages DWT and RDWT for multi-resolution decomposition, enabling watermark insertion in frequency subbands that balance visibility and resistance to attacks. RDWT,… More >

  • Open Access

    ARTICLE

    CerfeVPR: Cross-Environment Robust Feature Enhancement for Visual Place Recognition

    Lingyun Xiang1, Hang Fu1, Chunfang Yang2,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 325-345, 2025, DOI:10.32604/cmc.2025.062834 - 09 June 2025

    Abstract In the Visual Place Recognition (VPR) task, existing research has leveraged large-scale pre-trained models to improve the performance of place recognition. However, when there are significant environmental differences between query images and reference images, a large number of ineffective local features will interfere with the extraction of key landmark features, leading to the retrieval of visually similar but geographically different images. To address this perceptual aliasing problem caused by environmental condition changes, we propose a novel Visual Place Recognition method with Cross-Environment Robust Feature Enhancement (CerfeVPR). This method uses the GAN network to generate similar… More >

Displaying 1-10 on page 1 of 55. Per Page