Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (60)
  • Open Access

    ARTICLE

    Experimental Study and Failure Criterion Analysis of Rubber Fibre Reinforced Concrete under Biaxial Compression-Compression

    Yanli Hu1,2, Peiwei Gao3,*, Furong Li4, Zhiqing Zhao5, Zhenpeng Yu6

    Journal of Renewable Materials, Vol.11, No.4, pp. 2055-2073, 2023, DOI:10.32604/jrm.2022.023612

    Abstract In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete (RFRC), an experimental study on RFRC under different lateral compressive stresses was carried out by considering different rubber replacement rates and polypropylene fibre contents. The failure modes and mechanical property parameters of different RFRC working conditions were obtained from the experiment to explore the effects of rubber replacement rate and polypropylene fibre content on the biaxial compression-compression properties of RFRC. The following conclusions were drawn. Under the influence of lateral compressive stress, the biaxial compression-compression failure mode gradually developed from a columnar pattern to a flaky pattern,… More >

  • Open Access

    ARTICLE

    Dynamic Behaviour of Pond Ash Mixed with Coir and Crumb Rubber

    Ashish Malik*, Sanjay Kumar Singh

    Journal of Renewable Materials, Vol.11, No.3, pp. 1271-1291, 2023, DOI:10.32604/jrm.2022.023084

    Abstract An experimental program was conducted to determine the dynamic properties of pond ash (PA) and pond ash mixed with admixtures like crumb rubber (CR) and coir fiber (CF) which are wastes of different industries. Additives CR and CF were mixed separately with pond ash in a percentage ranging from 0%–20% at an interval of 5% and 0%–2% at an interval of 0.5% by weight of pond ash, respectively. Dynamic properties (Shear modulus, Number of cycles to initiate liquefaction, Degradation index and Damping ratio) for pond ash mixes were determined using strain-controlled cyclic tri-axial apparatus. The shear strain was kept constant… More >

  • Open Access

    ARTICLE

    Finite Element Simulation of Radial Tire Building and Shaping Processes Using an Elasto-Viscoplastic Model

    Yinlong Wang1, Zhao Li2, Ziran Li1,*, Yang Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1187-1208, 2023, DOI:10.32604/cmes.2022.022596

    Abstract The comprehensive tire building and shaping processes are investigated through the finite element method (FEM) in this article. The mechanical properties of the uncured rubber from different tire components are investigated through cyclic loading-unloading experiments under different strain rates. Based on the experiments, an elasto-viscoplastic constitutive model is adopted to describe the mechanical behaviors of the uncured rubber. The distinct mechanical properties, including the stress level, hysteresis and residual strain, of the uncured rubber can all be well characterized. The whole tire building process (including component winding, rubber bladder inflation, component stitching and carcass band folding-back) and the shaping process… More >

  • Open Access

    REVIEW

    Workability and Durability of Concrete Incorporating Waste Tire Rubber: A Review

    Peng Zhang, Xixi Wang, Juan Wang*, Tianhang Zhang

    Journal of Renewable Materials, Vol.11, No.2, pp. 745-776, 2023, DOI:10.32604/jrm.2022.022846

    Abstract Environmental problems caused by waste tires are becoming increasingly prominent. There is an urgent need to find a green way to dispose of waste tires, and scholars have made considerable efforts in this regard. In the construction industry, rubber extracted from waste tires can be added to concrete to alleviate environmental problems to a certain extent. As a new building material, rubber concrete has superior properties compared to ordinary concrete and has been widely used in many fields. Numerous studies have been conducted worldwide to investigate the effect of waste tire rubber on the performance of concrete. It has been… More >

  • Open Access

    ARTICLE

    Mechanical Test and Meso-Model Numerical Study of Composite Rubber Concrete under Salt-Freezing Cycle

    Mingkai Sun1,*, Yanan Wang2, Pingwei Jiang1, Zerong Song3, Zhan Gao4, Jiaming Xu5

    Journal of Renewable Materials, Vol.11, No.2, pp. 643-668, 2023, DOI:10.32604/jrm.2022.022168

    Abstract A composite rubber concrete (CRC) was designed by combining waste tire rubber particles with particle sizes of 3~5 mm, 1~3 mm and 20 mesh. Taking the rubber content of different particle sizes as the influencing factors, the range and variance analysis of the mechanical and impermeability properties of CRC was carried out by orthogonal test. Through analysis, it is concluded that the optimal proportion of 3~5 mm, 1~3 mm, and 20 mesh particle size composite rubber is 1:2.5:5. 5 kinds of CRC and 3 kinds of ordinary single-mixed rubber concrete (RC) with a total content of 10%~20% were designed under… More >

  • Open Access

    ARTICLE

    Mechanical Properties of Self-Compacting Rubberized Concrete with Different Rubber Types under Triaxial Compression

    Chunli Meng1, Weishu Fu1,*, Jianzeng Shen2,*, Yisheng Su1,2, Chunying Ye1

    Journal of Renewable Materials, Vol.11, No.2, pp. 581-598, 2023, DOI:10.32604/jrm.2022.022074

    Abstract Different rubber aggregates lead to changes in the effect of stress conditions on the mechanical behavior of concrete, and studies on the triaxial properties of self-compacting rubber concrete (SCRC) are rare. In this study, 35 cylindrical specimens taking lateral stress and rubber type as variables were prepared to study the fresh properties and mechanical behaviors of SCRC under triaxial compression, where the rubber contains two types, i.e., 380 μm rubber powder and 1–4 mm rubber particles, and four contents, i.e., 10%, 20% and 30%. The test results demonstrated that SCRC exhibited a typical oblique shear failure mode under triaxial compression… More > Graphic Abstract

    Mechanical Properties of Self-Compacting Rubberized Concrete with Different Rubber Types under Triaxial Compression

  • Open Access

    PROCEEDINGS

    Nonlinear Vibration Analysis of Horizontal Bi-Directional Restoring Force Characteristics for Seismic Isolated Laminated Rubber

    Ayumi Takahashi1,*, Kenya Kashiwagi2, Tomoyuki Tsuchiya2, Kazuhito Misaji1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-1, 2022, DOI:10.32604/icces.2022.08705

    Abstract As a characteristic of seismic isolated laminated rubber, the rubber is torsional deformed when it was loaded in horizontal bi-direction, and breaks with less force than when loaded in unidirectional. It is necessary to extend the model which has been used for unidirectional analysis to the model which can be analyzed in bi-direction. As a previous study, Igarashi applied the Multiple Shear Springs (MSS) model which is a horizontal bi-directional model, and compared them with measured values to verify their validity [1]. The authors extended PFT-ELS method to MSS model which can analyze bidirection [2]. The ELS method is a… More >

  • Open Access

    ARTICLE

    Evaluating Simultaneous Impact of Slag and Tire Rubber Powder on Mechanical Characteristics and Durability of Concrete

    Mostafa Amiri1, Farzad Hatami2,*, Emadaldin Mohammadi Golafshani3

    Journal of Renewable Materials, Vol.10, No.8, pp. 2155-2177, 2022, DOI: 10.32604/jrm.2022.019726

    Abstract In this experimental study, the impact of Portland cement replacement by ground granulated blast furnace slag (GGBFS) and micronized rubber powder (MRP) on the compressive, flexural, tensile strengths, and rapid chloride migration test (RCMT) of concrete were assessed. In this study, samples with different binder content and water to binder ratios, including the MRP with the substitution levels of 0%, 2.5% and 5%, and the GGBFS with the substitution ratios of 0%, 20% and 40% by weight of Portland cement were made. According to the results, in the samples containing slag and rubber powder in the early ages, on average,… More > Graphic Abstract

    Evaluating Simultaneous Impact of Slag and Tire Rubber Powder on Mechanical Characteristics and Durability of Concrete

  • Open Access

    ARTICLE

    Analysis of Highway Asphalt Modified with Recycled Rubber and Waste Plastics

    Aimin Zhang, Mingzhi Lu*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 907-918, 2022, DOI:10.32604/fdmp.2022.018995

    Abstract In this study, it is shown how recycled rubber and waste plastics can modify the softening point and penetration of asphalt traditionally used for highways. It is shown that the modified asphalt can meet the performance index requirements when the components are present with a certain proportion or relative ratio (1:3.5). The dispersion process of the masterbatch in base asphalt can effectively be implemented, with good results and a smaller mixing time. The proposed approach may be regarded as a good strategy to achieve energy savings and protection of the environment. More >

  • Open Access

    ARTICLE

    Effects of Planting Density of Rubber Tree Clone (RRIM 2020 Clone and RRIM 2025 Clone) Wood to Particleboard Properties

    Juliana Abdul Halip1,2, Syeed SaifulAzry Osman Al-Edrus1,*, Seng Hua Lee1,*, Paridah Md Tahir1, Nor Yuziah Mohd Yunus3, Mohd Sapuan Salit1, Ahmad Ilyas Rushdan4,5

    Journal of Renewable Materials, Vol.10, No.7, pp. 1951-1960, 2022, DOI:10.32604/jrm.2022.016025

    Abstract The depletion of log resources encourages research into alternative ways to sustain the wood supply. Therefore, the 4-year-old Rubber Research Institute of Malaysia (RRIM) clones series, RRIM 2020 and RRIM 2025, were chosen as potential raw materials for particleboard in this study. The purpose of this study was to assess the effects of planting density and rubber tree clones on the mechanical and physical properties of single-layer particleboard. The planting densities used were low, moderate-low, moderate-high, and high, representing 500, 1000, 1500, and 2000 trees/ha, respectively. Prior to manufacturing, the RRIM 2000 series clone trees were harvested, cut, chipped, flaked,… More >

Displaying 11-20 on page 2 of 60. Per Page