Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Salient Features Guided Augmentation for Enhanced Deep Learning Classification in Hematoxylin and Eosin Images

    Tengyue Li1,*, Shuangli Song1, Jiaming Zhou2, Simon Fong2,3, Geyue Li4, Qun Song3, Sabah Mohammed5, Weiwei Lin6, Juntao Gao7

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1711-1730, 2025, DOI:10.32604/cmc.2025.062489 - 09 June 2025

    Abstract Hematoxylin and Eosin (H&E) images, popularly used in the field of digital pathology, often pose challenges due to their limited color richness, hindering the differentiation of subtle cell features crucial for accurate classification. Enhancing the visibility of these elusive cell features helps train robust deep-learning models. However, the selection and application of image processing techniques for such enhancement have not been systematically explored in the research community. To address this challenge, we introduce Salient Features Guided Augmentation (SFGA), an approach that strategically integrates machine learning and image processing. SFGA utilizes machine learning algorithms to identify… More >

  • Open Access

    ARTICLE

    A Deep Learning-Based Salient Feature-Preserving Algorithm for Mesh Simplification

    Jiming Lan1, Bo Zeng1,*, Suiqun Li1, Weihan Zhang1, Xinyi Shi2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2865-2888, 2025, DOI:10.32604/cmc.2025.060260 - 16 April 2025

    Abstract The Quadric Error Metrics (QEM) algorithm is a widely used method for mesh simplification; however, it often struggles to preserve high-frequency geometric details, leading to the loss of salient features. To address this limitation, we propose the Salient Feature Sampling Points-based QEM (SFSP-QEM)—also referred to as the Deep Learning-Based Salient Feature-Preserving Algorithm for Mesh Simplification—which incorporates a Salient Feature-Preserving Point Sampler (SFSP). This module leverages deep learning techniques to prioritize the preservation of key geometric features during simplification. Experimental results demonstrate that SFSP-QEM significantly outperforms traditional QEM in preserving geometric details. Specifically, for general models… More >

  • Open Access

    ARTICLE

    Salient Object Detection Based on Multi-Strategy Feature Optimization

    Libo Han1,2, Sha Tao1,2, Wen Xia3, Weixin Sun3, Li Yan3, Wanlin Gao1,2,3,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2431-2449, 2025, DOI:10.32604/cmc.2024.057833 - 17 February 2025

    Abstract At present, salient object detection (SOD) has achieved considerable progress. However, the methods that perform well still face the issue of inadequate detection accuracy. For example, sometimes there are problems of missed and false detections. Effectively optimizing features to capture key information and better integrating different levels of features to enhance their complementarity are two significant challenges in the domain of SOD. In response to these challenges, this study proposes a novel SOD method based on multi-strategy feature optimization. We propose the multi-size feature extraction module (MSFEM), which uses the attention mechanism, the multi-level feature… More >

  • Open Access

    ARTICLE

    SAM Era: Can It Segment Any Industrial Surface Defects?

    Kechen Song1,2,*, Wenqi Cui2, Han Yu1, Xingjie Li1, Yunhui Yan2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3953-3969, 2024, DOI:10.32604/cmc.2024.048451 - 26 March 2024

    Abstract Segment Anything Model (SAM) is a cutting-edge model that has shown impressive performance in general object segmentation. The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model. Due to its superior performance in general object segmentation, it quickly gained attention and interest. This makes SAM particularly attractive in industrial surface defect segmentation, especially for complex industrial scenes with limited training data. However, its segmentation ability for specific industrial scenes remains unknown. Therefore, in this work, we select three representative and complex industrial surface defect detection scenarios, namely strip steel More >

  • Open Access

    ARTICLE

    Multi-Stream Temporally Enhanced Network for Video Salient Object Detection

    Dan Xu*, Jiale Ru, Jinlong Shi

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 85-104, 2024, DOI:10.32604/cmc.2023.045258 - 30 January 2024

    Abstract Video salient object detection (VSOD) aims at locating the most attractive objects in a video by exploring the spatial and temporal features. VSOD poses a challenging task in computer vision, as it involves processing complex spatial data that is also influenced by temporal dynamics. Despite the progress made in existing VSOD models, they still struggle in scenes of great background diversity within and between frames. Additionally, they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration. We propose a multi-stream temporal enhanced network (MSTENet)… More >

  • Open Access

    ARTICLE

    A Multi Moving Target Recognition Algorithm Based on Remote Sensing Video

    Huanhuan Zheng1,*, Yuxiu Bai1, Yurun Tian2

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 585-597, 2023, DOI:10.32604/cmes.2022.020995 - 24 August 2022

    Abstract The Earth observation remote sensing images can display ground activities and status intuitively, which plays an important role in civil and military fields. However, the information obtained from the research only from the perspective of images is limited, so in this paper we conduct research from the perspective of video. At present, the main problems faced when using a computer to identify remote sensing images are: They are difficult to build a fixed regular model of the target due to their weak moving regularity. Additionally, the number of pixels occupied by the target is not… More >

Displaying 1-10 on page 1 of 6. Per Page