Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    REVIEW

    An Investigation on Open-RAN Specifications: Use Cases, Security Threats, Requirements, Discussions

    Heejae Park1, Tri-Hai Nguyen2, Laihyuk Park1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 13-41, 2024, DOI:10.32604/cmes.2024.052394 - 20 August 2024

    Abstract The emergence of various technologies such as terahertz communications, Reconfigurable Intelligent Surfaces (RIS), and AI-powered communication services will burden network operators with rising infrastructure costs. Recently, the Open Radio Access Network (O-RAN) has been introduced as a solution for growing financial and operational burdens in Beyond 5G (B5G) and 6G networks. O-RAN promotes openness and intelligence to overcome the limitations of traditional RANs. By disaggregating conventional Base Band Units (BBUs) into O-RAN Distributed Units (O-DU) and O-RAN Centralized Units (O-CU), O-RAN offers greater flexibility for upgrades and network automation. However, this openness introduces new security More >

  • Open Access

    ARTICLE

    Enabling Efficient Data Transmission in Wireless Sensor Networks-Based IoT Applications

    Ibraheem Al-Hejri1, Farag Azzedin1,*, Sultan Almuhammadi1, Naeem Firdous Syed2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4197-4218, 2024, DOI:10.32604/cmc.2024.047117 - 20 June 2024

    Abstract The use of the Internet of Things (IoT) is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices. In critical infrastructure domains like oil and gas supply, intelligent transportation, power grids, and autonomous agriculture, it is essential to guarantee the confidentiality, integrity, and authenticity of data collected and exchanged. However, the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques. Consequently, designing a lightweight secure More >

  • Open Access

    REVIEW

    A Comprehensive Survey for Privacy-Preserving Biometrics: Recent Approaches, Challenges, and Future Directions

    Shahriar Md Arman1, Tao Yang1,*, Shahadat Shahed2, Alanoud Al Mazroa3, Afraa Attiah4, Linda Mohaisen4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2087-2110, 2024, DOI:10.32604/cmc.2024.047870 - 27 February 2024

    Abstract The rapid growth of smart technologies and services has intensified the challenges surrounding identity authentication techniques. Biometric credentials are increasingly being used for verification due to their advantages over traditional methods, making it crucial to safeguard the privacy of people’s biometric data in various scenarios. This paper offers an in-depth exploration for privacy-preserving techniques and potential threats to biometric systems. It proposes a noble and thorough taxonomy survey for privacy-preserving techniques, as well as a systematic framework for categorizing the field’s existing literature. We review the state-of-the-art methods and address their advantages and limitations in More >

  • Open Access

    ARTICLE

    Cybersecurity Threats Detection Using Optimized Machine Learning Frameworks

    Nadir Omer1,*, Ahmed H. Samak2, Ahmed I. Taloba3,4, Rasha M. Abd El-Aziz3,5

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 77-95, 2024, DOI:10.32604/csse.2023.039265 - 26 January 2024

    Abstract Today’s world depends on the Internet to meet all its daily needs. The usage of the Internet is growing rapidly. The world is using the Internet more frequently than ever. The hazards of harmful attacks have also increased due to the growing reliance on the Internet. Hazards to cyber security are actions taken by someone with malicious intent to steal data, destroy computer systems, or disrupt them. Due to rising cyber security concerns, cyber security has emerged as the key component in the fight against all online threats, forgeries, and assaults. A device capable of… More >

  • Open Access

    ARTICLE

    DL-Powered Anomaly Identification System for Enhanced IoT Data Security

    Manjur Kolhar*, Sultan Mesfer Aldossary

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2857-2879, 2023, DOI:10.32604/cmc.2023.042726 - 26 December 2023

    Abstract In many commercial and public sectors, the Internet of Things (IoT) is deeply embedded. Cyber security threats aimed at compromising the security, reliability, or accessibility of data are a serious concern for the IoT. Due to the collection of data from several IoT devices, the IoT presents unique challenges for detecting anomalous behavior. It is the responsibility of an Intrusion Detection System (IDS) to ensure the security of a network by reporting any suspicious activity. By identifying failed and successful attacks, IDS provides a more comprehensive security capability. A reliable and efficient anomaly detection system… More >

  • Open Access

    REVIEW

    Survey on Deep Learning Approaches for Detection of Email Security Threat

    Mozamel M. Saeed1,*, Zaher Al Aghbari2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 325-348, 2023, DOI:10.32604/cmc.2023.036894 - 31 October 2023

    Abstract Emailing is among the cheapest and most easily accessible platforms, and covers every idea of the present century like banking, personal login database, academic information, invitation, marketing, advertisement, social engineering, model creation on cyber-based technologies, etc. The uncontrolled development and easy access to the internet are the reasons for the increased insecurity in email communication. Therefore, this review paper aims to investigate deep learning approaches for detecting the threats associated with e-mail security. This study compiles the literature related to the deep learning methodologies, which are applicable for providing safety in the field of cyber… More >

  • Open Access

    REVIEW

    Blockchain Security Threats and Collaborative Defense: A Literature Review

    Xiulai Li1,2,3,4, Jieren Cheng1,3,*, Zhaoxin Shi2,3, Jingxin Liu2,3, Bin Zhang1,3, Xinbing Xu2,3, Xiangyan Tang1,3, Victor S. Sheng5

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2597-2629, 2023, DOI:10.32604/cmc.2023.040596 - 08 October 2023

    Abstract As a distributed database, the system security of the blockchain is of great significance to prevent tampering, protect privacy, prevent double spending, and improve credibility. Due to the decentralized and trustless nature of blockchain, the security defense of the blockchain system has become one of the most important measures. This paper comprehensively reviews the research progress of blockchain security threats and collaborative defense, and we first introduce the overview, classification, and threat assessment process of blockchain security threats. Then, we investigate the research status of single-node defense technology and multi-node collaborative defense technology and summarize More >

  • Open Access

    ARTICLE

    Automated Machine Learning Enabled Cybersecurity Threat Detection in Internet of Things Environment

    Fadwa Alrowais1, Sami Althahabi2, Saud S. Alotaibi3, Abdullah Mohamed4, Manar Ahmed Hamza5,*, Radwa Marzouk6

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 687-700, 2023, DOI:10.32604/csse.2023.030188 - 16 August 2022

    Abstract Recently, Internet of Things (IoT) devices produces massive quantity of data from distinct sources that get transmitted over public networks. Cybersecurity becomes a challenging issue in the IoT environment where the existence of cyber threats needs to be resolved. The development of automated tools for cyber threat detection and classification using machine learning (ML) and artificial intelligence (AI) tools become essential to accomplish security in the IoT environment. It is needed to minimize security issues related to IoT gadgets effectively. Therefore, this article introduces a new Mayfly optimization (MFO) with regularized extreme learning machine (RELM)… More >

  • Open Access

    ARTICLE

    Advanced Authentication Mechanisms for Identity and Access Management in Cloud Computing

    Amjad Alsirhani, Mohamed Ezz, Ayman Mohamed Mostafa*

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 967-984, 2022, DOI:10.32604/csse.2022.024854 - 09 May 2022

    Abstract Identity management is based on the creation and management of user identities for granting access to the cloud resources based on the user attributes. The cloud identity and access management (IAM) grants the authorization to the end-users to perform different actions on the specified cloud resources. The authorizations in the IAM are grouped into roles instead of granting them directly to the end-users. Due to the multiplicity of cloud locations where data resides and due to the lack of a centralized user authority for granting or denying cloud user requests, there must be several security… More >

  • Open Access

    ARTICLE

    Design of Cybersecurity Threat Warning Model Based on Ant Colony Algorithm

    Weiwei Lin1,2,*, Reiko Haga3

    Journal on Big Data, Vol.3, No.4, pp. 147-153, 2021, DOI:10.32604/jbd.2021.017299 - 20 December 2021

    Abstract In this paper, a cybersecurity threat warning model based on ant colony algorithm is designed to strengthen the accuracy of the cybersecurity threat warning model in the warning process and optimize its algorithm structure. Through the ant colony algorithm structure, the local global optimal solution is obtained; and the cybersecurity threat warning index system is established. Next, the above two steps are integrated to build the cybersecurity threat warning model based on ant colony algorithm, and comparative experiment is also designed. The experimental results show that, compared with the traditional qualitative differential game-based cybersecurity More >

Displaying 1-10 on page 1 of 13. Per Page