Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ABSTRACT

    Experimental and Analytical Studies of Tumor Growth

    Hao Sun1, Timothy Eswothy1, Kerlin P. Robert1, Jiaoyan Li2, L. G. Zhang1, James D. Lee1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 75-75, 2019, DOI:10.32604/mcb.2019.07090

    Abstract Most biological phenomena commonly involve with mechanics. In this work, we proposed an innovative model that tumor is considered as a pyroelastic medium consisting of two parts: solid and fluid. The variation of solid part depends on whether the drug has been effectively delivered to the tumor site. We derived the governing equations of the tumor, in which large deformation is incorporated. Meanwhile, the finite element equations for coupled displacement field and pressure field are formulated. We proposed two sets of porosity and growth tensor. In both cases the continuum theory and FEM are accompanied More >

  • Open Access

    ABSTRACT

    Analysis of cutoff effect on groundwater seepage of underground structures in Aquifers of Shanghai

    Ye-Shuang Xu, Shui-Long Shen, Jin-Chun Chai, Zhen-Shun Hong

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.2, pp. 65-66, 2011, DOI:10.3970/icces.2011.020.065

    Abstract With the process of urbanization, a large amount of infrastructures, e.g. metro tunnels, underground path, and building basement, is constructed in underground along coastal mega-cities, e.g. Shanghai, Tianjin, and Guangzhou etc. The existence of underground in aquifers within the urban region obstructs the behavior of seepage and results in the raise of groundwater level at the upper side and drawdown of groundwater level at the lower side of the structure. Therefore, rebound at the upper side and settlement at the lower side of underground structures may occur due to consolidation in long-term and redistribution of… More >

  • Open Access

    ARTICLE

    Numerical study on seepage property of karst collapse columns under particle migration

    Banghua Yao1,2, Jianping Wei1, Dengke Wang1, Dan Ma2,3, Zhanqing Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.2, pp. 81-100, 2013, DOI:10.3970/cmes.2013.091.081

    Abstract Presently, there is an increasing number of water outburst accidents in China as mining activity continues to develop to deeper ground. In these accidents, water outburst caused by karst collapse columns often results in serious damage, involving both the loss of lives and significant economic loss. Therefore, it is of utmost importance to study the seepage property and water outburst mechanism of karst collapse columns. In this paper, based on the seepage theory and the groundwater dynamic theory of porous media, a fluid-solid coupling model for karst collapse columns was built and then imported into… More >

  • Open Access

    ARTICLE

    Seepage-Stress-Damage Coupled Model of Coal Under Geo-Stress Influence

    Yi Xue1,2,3, Faning Dang2, Rongjian Li2, Liuming Fan2, Qin Hao4, Lin Mu2, Yuanyuan Xia2

    CMC-Computers, Materials & Continua, Vol.54, No.1, pp. 43-59, 2018, DOI:10.3970/cmc.2018.054.043

    Abstract In the seepage-stress-damage coupled process, the mechanical properties and seepage characteristics of coal are distinctly different between pre-peak stage and post-peak stage. This difference is mainly caused by damage of coal. Therefore, in the process of seepage and stress analysis of coal under the influence of excavation or mining, we need to consider the weakening of mechanical properties and the development of fractures of damaged coal. Based on this understanding, this paper analyzes the influence of damage on mechanics and seepage behavior of coal. A coupled model is established to analyze the seepage-stress-damage coupled process More >

Displaying 21-30 on page 3 of 24. Per Page