Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access


    Revolutionizing Tight Reservoir Production: A Novel Dual-Medium Unsteady Seepage Model for Optimizing Volumetrically Fractured Horizontal Wells

    Xinyu Zhao1,2,*, Mofeng Li2, Kai Yan2, Li Yin3

    Energy Engineering, Vol.120, No.12, pp. 2933-2949, 2023, DOI:10.32604/ee.2023.041580

    Abstract This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs, employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal wells. Traditional models often fail to fully capture the complex dynamics associated with these unconventional reservoirs. In a significant departure from these models, our approach incorporates an initiation pressure gradient and a discrete fracture seepage network, providing a more realistic representation of the seepage process. The model also integrates an enhanced fluid-solid interaction, which allows for a more comprehensive understanding of the fluid-structure interactions in the reservoir. This is achieved through the incorporation of… More >

  • Open Access


    Study of the Seepage Mechanism in Thick Heterogeneous Gas Reservoirs

    Xin Huang1,*, Yunpeng Jiang1, Daowu Huang1, Xianke He1, Xianguo Zhang2, Ping Guo3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1679-1691, 2023, DOI:10.32604/fdmp.2023.025312


    The seepage mechanism plays a crucial role in low-permeability gas reservoirs. Compared with conventional gas reservoirs, low-permeability sandstone gas reservoirs are characterized by low porosity, low permeability, strong heterogeneity, and high water saturation. Moreover, their percolation mechanisms are more complex. The present work describes a series of experiments conducted considering low-permeability sandstone cores under pressure-depletion conditions (from the Xihu Depression in the East China Sea Basin). It is shown that the threshold pressure gradient of a low-permeability gas reservoir in thick layers is positively correlated with water saturation and negatively correlated with permeability and porosity. The reservoir stress sensitivity is… More >

  • Open Access


    An Approach for Quantifying the Influence of Seepage Dissolution on Seismic Performance of Concrete Dams

    Shaowei Wang1,2, Cong Xu1, Hao Gu3,*, Pinghua Zhu1, Hui Liu1, Bo Xu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 97-117, 2022, DOI:10.32604/cmes.2022.018721

    Abstract Many concrete dams seriously suffer from long-term seepage dissolution, and the induced mechanical property deterioration of concrete may significantly affect the structural performance, especially the seismic safety. An approach is presented in this paper to quantify the influence of seepage dissolution on seismic performance of concrete dams. To connect laboratory test with numerical simulation, dissolution tests are conducted for concrete specimens and using the cumulative relative leached calcium as an aging index, a deterioration model is established to predict the mechanical property of leached concrete in the first step. A coupled seepage-calcium dissolution-migration model containing two calculation modes is proposed… More >

  • Open Access


    Simulation of the Pressure-Sensitive Seepage Fracture Network in Oil Reservoirs with Multi-Group Fractures

    Yueli Feng1,2, Yuetian Liu1,2,*, Jian Chen1,2, Xiaolong Mao1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 395-415, 2022, DOI:10.32604/fdmp.2022.018141

    Abstract Stress sensitivity is a very important index to understand the seepage characteristics of a reservoir. In this study, dedicated experiments and theoretical arguments based on the visualization of porous media are used to assess the effects of the fracture angle, spacing, and relevant elastic parameters on the principal value of the permeability tensor. The fracture apertures at different angles show different change rates, which influence the relative permeability for different sets of fractures. Furthermore, under the same pressure condition, the fractures with different angles show different degrees of deformation so that the principal value direction of permeability rotates. This phenomenon… More >

  • Open Access


    Experimental Study on Seepage Characteristics of a Soil-Rock Mixture in a Fault Zone

    Pengfei Wang1,2, Xiangyang Zhang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 271-283, 2022, DOI:10.32604/fdmp.2022.017882

    Abstract A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM (Soil-Rock Mixture) sample with rock block proportions of 20%, 30%, 40%, 50%, 60% and 70%, respectively. A GDS triaxial test system is used accordingly to measure the seepage characteristics of such samples under different loading and unloading confining pressures in order to determine the variation law of the permeability coefficient. The test results show that: (1) The permeability coefficient of the S-RM samples decreases as the pressure increases, and the decrease rate of this coefficient in the initial stage of confining… More >

  • Open Access


    Application of the Navier-Stokes Equations to the Analysis of the Landslide Sediments Permeability and Related Seepage Effects

    Meng Song1,*, Yuncai Liu2, Zhen Wang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 313-327, 2022, DOI:10.32604/fdmp.2022.017737

    Abstract The purpose of the study is to implement a new model based on the Navier-Stokes equations for the characterization of landslide sediments interacting with a moving fluid. The model is implemented by combining Hypermesh, the LS-DYNA software and MATLAB. The results show that the main factors affecting the permeability of landslide sediments are the genetic mechanism, the structure and composition of materials, material lithology, and stress. The characteristics and mechanism of permeability changes are determined by adjusting the water levels of fluids. It is found that the permeability of landslide sediments increases at the front and decreases in the middle… More >

  • Open Access


    Analysis of the Microstructure and Macroscopic Fluid-Dynamics Behavior of Soft Soil after Seepage Consolidation

    Fang Jin*, Dong Zhou, Liying Zhu

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 285-302, 2022, DOI:10.32604/fdmp.2022.017593

    Abstract The purpose is to study the microstructure and macroscopic fluid-dynamic behavior of soft soil after it has been subjected to a seepage consolidation procedure. First, the microscopic pore structure of soft clay is quantitatively studied by a scanning electron microscope technique. Second, the average contact area rate of soil particles is obtained employing statistical analysis applied to microscopic images of soft soil, and the macroscopic porosity of soft clay is determined through an indoor geotechnical test. Finally, mathematical relationships are introduced by fitting the results of the test. The results show that the unmodified empirical equation for the permeability coefficient… More >

  • Open Access


    Uncertainty Analysis of Seepage-Induced Consolidation in a Fractured Porous Medium

    Lingai Guo1, Marwan Fahs2, Hussein Hoteit3, Rui Gao1,*, Qian Shao1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 279-297, 2021, DOI:10.32604/cmes.2021.016619

    Abstract Numerical modeling of seepage-induced consolidation process usually encounters significant uncertainty in the properties of geotechnical materials. Assessing the effect of uncertain parameters on the performance variability of the seepage consolidation model is of critical importance to the simulation and tests of this process. To this end, the uncertainty and sensitivity analyses are performed on a seepage consolidation model in a fractured porous medium using the Bayesian sparse polynomial chaos expansion (SPCE) method. Five uncertain parameters including Young’s modulus, Poisson’s ratio, and the permeability of the porous matrix, the permeability within the fracture, and Biot’s constant are studied. Bayesian SPCE models… More >

  • Open Access


    Progress on Heat Transfer in Fractures of Hot Dry Rock Enhanced Geothermal System

    Yiya Wang, Hailong Yu*, Shucheng Wu, Li Liu, Liuyang Huang, Baozhong Zhu, Yunlan Sun, Enhai Liu

    Energy Engineering, Vol.118, No.4, pp. 797-823, 2021, DOI:10.32604/EE.2021.014467

    Abstract Hot Dry Rock (HDR) is the most potential renewable geothermal energy in the future. Enhanced Geothermal System (EGS) is the most effective method for the development and utilization of HDR resources, and fractures are the main flow channels and one of the most important conditions for studying heat transfer process of EGS. Therefore, the heat transfer process and the heat transfer mechanism in fractures of EGS have been the hot spots of research. Due to the particularity of the mathematical models of heat transfer, research in this field has been at an exploratory stage, and its methods are mainly experimental… More >

  • Open Access


    The Micro-Scale Mechanism of Metal Mine Tailings Thickening Concentration Improved by Shearing in Gravity Thickener

    Huazhe Jiao1,2, Yachuang Wu1, Wei Wang2,*, Xinming Chen1, Yunfei Wang1, Juanhong Liu3, Wentao Feng4

    Journal of Renewable Materials, Vol.9, No.4, pp. 637-650, 2021, DOI:10.32604/jrm.2021.014310

    Abstract Higher concentration is beneficial for the Paste and Thickened Tailings (PTT) operation in metal mine. Partial paste thickeners are produced lower density underflow. Flocculated tailings are intended to form a water entrapped network structure in thickener, which is detrimental to underflow concentration. In this study, the continuous thickening experiment was carried out for ultra-fine tungsten tailings to study the influence of rake shearing on underflow. The micro pores structure and seepage flow in tailings bed before and after shearing are studied by CT and simulation approach to reveal the shearing enhancement mechanism of thickening process. The results shown that, the… More >

Displaying 1-10 on page 1 of 22. Per Page