Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    ARTICLE

    Simulation of the Pressure-Sensitive Seepage Fracture Network in Oil Reservoirs with Multi-Group Fractures

    Yueli Feng1,2, Yuetian Liu1,2,*, Jian Chen1,2, Xiaolong Mao1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 395-415, 2022, DOI:10.32604/fdmp.2022.018141 - 16 December 2021

    Abstract Stress sensitivity is a very important index to understand the seepage characteristics of a reservoir. In this study, dedicated experiments and theoretical arguments based on the visualization of porous media are used to assess the effects of the fracture angle, spacing, and relevant elastic parameters on the principal value of the permeability tensor. The fracture apertures at different angles show different change rates, which influence the relative permeability for different sets of fractures. Furthermore, under the same pressure condition, the fractures with different angles show different degrees of deformation so that the principal value direction More >

  • Open Access

    ARTICLE

    Experimental Study on Seepage Characteristics of a Soil-Rock Mixture in a Fault Zone

    Pengfei Wang1,2, Xiangyang Zhang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 271-283, 2022, DOI:10.32604/fdmp.2022.017882 - 16 December 2021

    Abstract A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM (Soil-Rock Mixture) sample with rock block proportions of 20%, 30%, 40%, 50%, 60% and 70%, respectively. A GDS triaxial test system is used accordingly to measure the seepage characteristics of such samples under different loading and unloading confining pressures in order to determine the variation law of the permeability coefficient. The test results show that: (1) The permeability coefficient of the S-RM samples decreases as the pressure increases, and the decrease rate of this coefficient in… More >

  • Open Access

    ARTICLE

    Application of the Navier-Stokes Equations to the Analysis of the Landslide Sediments Permeability and Related Seepage Effects

    Meng Song1,*, Yuncai Liu2, Zhen Wang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 313-327, 2022, DOI:10.32604/fdmp.2022.017737 - 16 December 2021

    Abstract The purpose of the study is to implement a new model based on the Navier-Stokes equations for the characterization of landslide sediments interacting with a moving fluid. The model is implemented by combining Hypermesh, the LS-DYNA software and MATLAB. The results show that the main factors affecting the permeability of landslide sediments are the genetic mechanism, the structure and composition of materials, material lithology, and stress. The characteristics and mechanism of permeability changes are determined by adjusting the water levels of fluids. It is found that the permeability of landslide sediments increases at the front More >

  • Open Access

    ARTICLE

    Analysis of the Microstructure and Macroscopic Fluid-Dynamics Behavior of Soft Soil after Seepage Consolidation

    Fang Jin*, Dong Zhou, Liying Zhu

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 285-302, 2022, DOI:10.32604/fdmp.2022.017593 - 16 December 2021

    Abstract The purpose is to study the microstructure and macroscopic fluid-dynamic behavior of soft soil after it has been subjected to a seepage consolidation procedure. First, the microscopic pore structure of soft clay is quantitatively studied by a scanning electron microscope technique. Second, the average contact area rate of soil particles is obtained employing statistical analysis applied to microscopic images of soft soil, and the macroscopic porosity of soft clay is determined through an indoor geotechnical test. Finally, mathematical relationships are introduced by fitting the results of the test. The results show that the unmodified empirical More >

  • Open Access

    ARTICLE

    Uncertainty Analysis of Seepage-Induced Consolidation in a Fractured Porous Medium

    Lingai Guo1, Marwan Fahs2, Hussein Hoteit3, Rui Gao1,*, Qian Shao1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 279-297, 2021, DOI:10.32604/cmes.2021.016619 - 24 August 2021

    Abstract Numerical modeling of seepage-induced consolidation process usually encounters significant uncertainty in the properties of geotechnical materials. Assessing the effect of uncertain parameters on the performance variability of the seepage consolidation model is of critical importance to the simulation and tests of this process. To this end, the uncertainty and sensitivity analyses are performed on a seepage consolidation model in a fractured porous medium using the Bayesian sparse polynomial chaos expansion (SPCE) method. Five uncertain parameters including Young’s modulus, Poisson’s ratio, and the permeability of the porous matrix, the permeability within the fracture, and Biot’s constant… More >

  • Open Access

    REVIEW

    Progress on Heat Transfer in Fractures of Hot Dry Rock Enhanced Geothermal System

    Yiya Wang, Hailong Yu*, Shucheng Wu, Li Liu, Liuyang Huang, Baozhong Zhu, Yunlan Sun, Enhai Liu

    Energy Engineering, Vol.118, No.4, pp. 797-823, 2021, DOI:10.32604/EE.2021.014467 - 31 May 2021

    Abstract Hot Dry Rock (HDR) is the most potential renewable geothermal energy in the future. Enhanced Geothermal System (EGS) is the most effective method for the development and utilization of HDR resources, and fractures are the main flow channels and one of the most important conditions for studying heat transfer process of EGS. Therefore, the heat transfer process and the heat transfer mechanism in fractures of EGS have been the hot spots of research. Due to the particularity of the mathematical models of heat transfer, research in this field has been at an exploratory stage, and More >

  • Open Access

    ARTICLE

    The Micro-Scale Mechanism of Metal Mine Tailings Thickening Concentration Improved by Shearing in Gravity Thickener

    Huazhe Jiao1,2, Yachuang Wu1, Wei Wang2,*, Xinming Chen1, Yunfei Wang1, Juanhong Liu3, Wentao Feng4

    Journal of Renewable Materials, Vol.9, No.4, pp. 637-650, 2021, DOI:10.32604/jrm.2021.014310 - 01 February 2021

    Abstract Higher concentration is beneficial for the Paste and Thickened Tailings (PTT) operation in metal mine. Partial paste thickeners are produced lower density underflow. Flocculated tailings are intended to form a water entrapped network structure in thickener, which is detrimental to underflow concentration. In this study, the continuous thickening experiment was carried out for ultra-fine tungsten tailings to study the influence of rake shearing on underflow. The micro pores structure and seepage flow in tailings bed before and after shearing are studied by CT and simulation approach to reveal the shearing enhancement mechanism of thickening process.… More >

  • Open Access

    ARTICLE

    Shear Induced Seepage and Heat Transfer Evolution in a Single-Fractured Hot-Dry-Rock

    Hongwei Zhang1,2, Zhijun Wan3, Yixin Zhao1,2, Yuan Zhang3, Yulong Chen2,*, Junhui Wang3,*, Jingyi Cheng3

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 443-455, 2021, DOI:10.32604/cmes.2021.013179 - 21 January 2021

    Abstract In the enhanced geothermal system (EGS), the injected fluid will induce shear sliding of rock fractures (i.e., hydroshearing), which consequently, would increase the fracture aperture and improve the heat transfer efficiency of the geothermal reservoir. In this study, theoretical analysis, experimental research and numerical simulation were performed to uncover the permeability and heat transfer enhancement mechanism of the Hot-Dry-Rock (HDR) mass under the impact of shearing. By conducting the direct shear test with the fractured rock samples, the evolution process of fracture aperture during the shearing tests was observed, during which process, cubic law was… More >

  • Open Access

    ARTICLE

    Analysis of a Water-Inrush Disaster Caused by Coal Seam Subsidence Karst Collapse Column under the Action of Multi-Field Coupling in Taoyuan Coal Mine

    Zhibin Lin1, Boyang Zhang1,2,*, Jiaqi Guo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 311-330, 2021, DOI:10.32604/cmes.2021.011556 - 22 December 2020

    Abstract Minin-induced water inrush from a confined aquifer due to subsided floor karst collapse column (SKCC) is a type of serious disaster in the underground coal extraction. Karst collapse column (KCC) developed in a confined aquifer occurs widely throughout northern China. A water inrush disaster from SKCC occurred in Taoyuan coal mine on February 3, 2013. In order to analyze the effect of the KCC influence zone’s (KCCIZ) width and the entry driving distance of the water inrush through the fractured channels of the SKCC, the stress, seepage, and impact dynamics coupling equations were used to… More >

  • Open Access

    ARTICLE

    Experimental Study on Permeability Characteristics of Geotubes for Seepage Analysis on Safety Assessment of Dams

    Xiaolei Man1,*, Ganggang Sha2, Shuigen Hu1, Hui Bao1, Guangying Liu1

    Structural Durability & Health Monitoring, Vol.14, No.4, pp. 339-353, 2020, DOI:10.32604/sdhm.2020.013001 - 04 December 2020

    Abstract Geotubes are heterogeneous structures composed of filling sand and bag material, and its permeability characteristics are different from that of filling sand. The uncertainty of geotubes permeability characteristics results in the failure of seepage analysis of geotube dams, which restricts the safety assessment of the dams. As the basis of the study on the seepage mechanism of the geotubes, the influence of particle grading on permeability coefficient of filling sand and sand covered with geotextiles were explored by the permeability tests of filling sand with different particle grading under the condition of sand covered with… More >

Displaying 11-20 on page 2 of 29. Per Page