Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    Region-Aware Trace Signal Selection Using Machine Learning Technique for Silicon Validation and Debug

    R. Agalya1, R. Muthaiah2,*, D. Muralidharan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.1, pp. 25-43, 2019, DOI:10.32604/cmes.2019.05616

    Abstract In today’s modern design technology, post-silicon validation is an expensive and composite task. The major challenge involved in this method is that it has limited observability and controllability of internal signals. There will be an issue during execution how to address the useful set of signals and store it in the on-chip trace buffer. The existing approaches are restricted to particular debug set-up where all the components have equivalent prominence at all the time. Practically, the verification engineers will emphasis only on useful functional regions or components. Due to some constraints like clock gating, some… More >

  • Open Access

    ARTICLE

    A Study on Microstructural and Mechanical Properties of a Stir Cast Al (SiC-Mg-TiFe) Composite

    Samuel Olukayode Akinwamide1, Serge Mudinga Lemika1, Babatunde Abiodun Obadele1,3, Ojo Jeremiah Akinribide1, Bolanle Tolulope Abe2, Peter Apata Olubambi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.1, pp. 15-26, 2019, DOI:10.32604/fdmp.2019.04761

    Abstract Development of metal matrix composite is becoming widespread in most engineering applications where excellent mechanical properties are required. Mechanical and microstructural properties of aluminium reinforced with silicon carbide was investigated. Ingot of aluminium was melted in a furnace at temperature ranging between 650-700 ℃. Ferrotitanium and silicon carbide were preheated in a muffle furnace before addition to molten aluminium in a crucible furnace. Fixed proportions of magnesium, ferrotitanium and varying proportions of silicon carbide were utilized as reinforcements. Stirring was carried out manually for a minimum of 10 mins after the addition of each weight More >

  • Open Access

    ARTICLE

    Silicon-mediated alleviation of Cadmium toxicity on Thujopsis dolabrata

    Huang YC1, H Chen1, WJ Zhao2, WD Li1, HY Yang1, Y Sun1, L Wang1, SH Cao1

    Phyton-International Journal of Experimental Botany, Vol.85, pp. 283-290, 2016, DOI:10.32604/phyton.2016.85.283

    Abstract We conducted pot experiments on the cypress Thujopsis dolabrata (Linn. f.) Sieb. et Zucc. in order to study the interaction of silicon (Si) and root exudates on cadmium (Cd) bioavailability in the rhizosphere,. Each variety was planted with 100 mg/kg Cd and/or 400 mg/kg Si for 210 days. The results showed that adding Si increased Cd tolerance in T. dolabrata, but that the mechanism was specifical. In T. dolabrata, Si did not prevent Cd translocation from roots to shoots, and it significantly enhanced Cd accumulation without inhibiting growth. Moreover, Si mobilized Cd from the rhizospheric soil by stimulating More >

  • Open Access

    ARTICLE

    DEVELOPMENT OF A 10 KW MICROWAVE APPLICATOR FOR THERMAL CRACKING OF LIGNITE BRIQUETTES

    Benjamin Lepersa,∗, Thomas Seitza, Guido Linka, John Jelonneka,b, Mark Zinkc

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-6, 2015, DOI:10.5098/hmt.6.20

    Abstract A compact 10 kW microwave applicator operating at 2.45 GHz for fast volumetric heating and thermal cracking of lignite briquettes has been successfully designed and tested. In this paper, the applicator design and construction are presented together with a sequentially coupled electromagnetic, thermal-fluid and mechanical Comsol model. In a first step, this model allows us to calculate the power density inside the lignite material and the temperature distribution in the applicator for different water flow rates. In a second step, the total stress due to the thermal dilatation, the internal pressure inside the ceramic and More >

  • Open Access

    ARTICLE

    Effects of Geometry and Shape on the Mechanical Behaviors of Silicon Nanowires

    Qunfeng Liu1,2, Liang Wang1, gping Shen1

    CMC-Computers, Materials & Continua, Vol.46, No.2, pp. 105-123, 2015, DOI:10.3970/cmc.2015.046.105

    Abstract Molecular dynamics simulations have been performed to investigate the effects of cross section geometry and shape on the mechanical behaviors of silicon nanowires (Si NWs) under tensile loading. The results show that elasticity of <100> rectangular Si NWs depends on their cross section aspect ratios while the elastic limits of <110> and <111> wires show geometry independence. Despite the significant influence of axial orientation, both yield stress and Young's Modulus show the remarkable shape dependence for wires with various regular cross sections. Additionally, underlying mechanism for the geometry and shape effects on mechanical behavior are discussed based More >

  • Open Access

    ARTICLE

    A SEM Record of Proteins-Derived Microcellular Silicon Carbide Foams

    A. Pizzi1,2,*, C. Zollfrank3, X. Li1, M. Cangemi1, A. Celzard4

    Journal of Renewable Materials, Vol.2, No.3, pp. 230-234, 2014, DOI:10.7569/JRM.2014.634114

    Abstract Protein rigid foams based on albumin coreacted with camphor and an aldehyde were converted into silicon carbide (SiC) foams. This was carried out by putting albumin-derived template foams in contact with silicon compounds in liquid phase and calcinating the mix obtained at a relatively low temperature of 500°C to eliminate the protein and leave the SiC foam. The transformation was followed by scanning electron microscopy (SEM) from the natural albumin foams to the gel obtained by infi ltrating them with tetraethyl orthosilicate (TEOS) and to the appearance of the SiC foams after calcination. X-ray diffraction More >

  • Open Access

    ARTICLE

    Axisymmetric and 3-D Numerical Simulations of the Effects of a Static Magnetic Field on Dissolution of Silicon into Germanium

    F. Mechighel1,2,3, N. Armour4, S. Dost4, M. Kadja3

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.1, pp. 53-80, 2014, DOI:10.3970/cmes.2014.097.053

    Abstract Numerical simulations were carried out to explain the behavior exhibited in experimental work on the dissolution process of silicon into a germanium melt. The experimental work utilized a material configuration similar to that used in the Liquid Phase Diffusion (LPD) and Melt-Replenishment Czochralski (Cz) growth systems. The experimental dissolution system was modeled by considering axisymmetric and three-dimensional (3-D) domains. In both cases, the governing equations, namely conservation of mass, momentum balance, energy balance, and solute transport balance, were solved using the Finite Element Method.
    Measured concentration profiles and dissolution heights from the experiment samples showed that… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Liquid Phase Diffusion Growth of SiGe Single Crystals under Zero Gravity

    M. Sekhon1, N. Armour1, S. Dost1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.4, pp. 331-351, 2013, DOI:10.3970/fdmp.2013.009.331

    Abstract Liquid Phase Diffusion (LPD) growth of SixGe1-x single crystals has been numerically simulated under zero gravity. The objective was to examine growth rate and silicon concentration distribution in the LPD grown crystals under diffusion dominated mass transport prior to the planned LPD space experiments on the International Space Station (ISS). Since we are interested in predicting growth rate and crystal composition, the gravitational fluctuation of the ISS (g-jitter) was neglected and the gravity level was taken as zero for simplicity.
    A fixed grid approach has been utilized for the simulation. An integrated top-level solver was developed… More >

  • Open Access

    ARTICLE

    An Alternative Approach to Minimize the Convection in Growing a Large Diameter Single Bulk Crystal of Si0.25Ge0.75 Alloy in a Vertical Bridgman Furnace

    M. M. Shemirani1, M. Z. Saghir2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.1, pp. 11-21, 2013, DOI:10.3970/fdmp.2013.009.011

    Abstract Producing homogeneous single bulk crystals requires a good understanding of the thermo-solutal behavior in the solvent region. This study explores simulation of the growth of large diameter single bulk crystals of silicon and germanium alloy from its melt utilizing Bridgman method. Both thermal and solutal diffusion of silicon and germanium in the molten SiGe alloy are of interest. It was observed that the diffusion dominates the transport phenomenon in the solvent region especially in the first 25 mm of the model due to having a PeT <<1. It was also found that the control of both More >

  • Open Access

    ARTICLE

    Bandgap Opening in Metallic Carbon Nanotubes Due to Silicon Adatoms

    Branden B. Kappes1, Cristian V. Ciobanu2

    CMC-Computers, Materials & Continua, Vol.38, No.1, pp. 1-16, 2013, DOI:10.3970/cmc.2013.038.001

    Abstract Controlling the bandgap of carbon nanostructures is a key factor in the development of mainstream applications of carbon-based nanoelectronic devices. This is particularly important in the cases where it is desired that the carbon nanostructures are the active elements, as opposed to being the conductive leads between other elements of the device. Here, we report density functional theory calculations of the effect of silicon impurities on the electronic properties of carbon nanotubes (CNTs). We have found that Si adatoms can open up a bandgap in intrinsically metallic CNTs, even when the linear density of Si More >

Displaying 21-30 on page 3 of 40. Per Page