Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,162)
  • Open Access

    ARTICLE

    Determination of Temperature-Dependent Elasto-Plastic Properties of Thin-Film by MD Nanoindentation Simulations and an Inverse GA/FEM Computational Scheme

    D. S. Liu1, C. Y. Tsai1, S. R. Lyu2

    CMC-Computers, Materials & Continua, Vol.11, No.2, pp. 147-164, 2009, DOI:10.3970/cmc.2009.011.147

    Abstract This study presents a novel numerical method for extracting the tempe -rature-dependent mechanical properties of the gold and aluminum thin-films. In the proposed approach, molecular dynamics (MD) simulations are performed to establish the load-displacement response of the thin substrate nanoindented at temperatures ranging from 300-900 K. A simple but effective procedure involving genetic algorithm (GA) and finite element method (FEM) is implemented to extract the material constants of the gold and aluminum substrates. The material constants are then used to construct the corresponding stress-strain curve, from which the elastic modulus, yield stress and the tangent modulus of the thin film… More >

  • Open Access

    ARTICLE

    An Investigation into the Mechanical Behavior of Single-Walled Carbon Nanotubes under Uniaxial Tension Using Molecular Statics and Molecular Dynamics Simulations

    Yeau-Ren Jeng1,Ping-Chi Tsai1,Guo-Zhe Huang1, I-Ling Chang1

    CMC-Computers, Materials & Continua, Vol.11, No.2, pp. 109-126, 2009, DOI:10.3970/cmc.2009.011.109

    Abstract This study performs a series of Molecular Dynamics (MD) and Molecular Statics (MS) simulations to investigate the mechanical properties of single-walled carbon nanotubes (SWCNTs) under a uniaxial tensile strain. The simulations focus specifically on the effects of the nanotube helicity, the nanotube diameter and the percentage of vacancy defects on the bond length, bond angle and tensile strength of zigzag and armchair SWCNTs. In this study, a good agreement is observed between the MD and MS simulation results for the stress-strain response of the SWCNTs in both the elastic and the plastic deformation regimes. The MS simulations reveal that in… More >

  • Open Access

    ARTICLE

    Efficient Simulation of Gas Flow in Blast Furnace

    P. B. Abhale1, N. N. Viswanathan1, N. B. Ballal1

    CMC-Computers, Materials & Continua, Vol.10, No.2, pp. 195-216, 2009, DOI:10.3970/cmc.2009.010.195

    Abstract Simulation of gas flow in a multilayered non-isothermal packed bed is useful for blast furnace operators in deciding appropriate charging strategy. While using an anisotropic form of Ergun equation to simulate gas flow through such systems, a new solution methodology for non-isothermal gas with varying density flowing through a layered burden has been proposed. This involves handling non-linearity due to gas density variation with pressure and temperature by solving for the square of pressure instead of pressure directly and handling the non-linearity due to |v| term in the Ergun equation by solving linearized form of Ergun equation and updating |v|… More >

  • Open Access

    ARTICLE

    Application of the Cell Method to the Simulation of Unsaturated Flow

    S. Straface1, S. Troisi, V. Gagliardi

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 155-166, 2006, DOI:10.3970/cmc.2006.003.155

    Abstract The present work shows an alternative to the classical methods to solve the Richards' Equation (RE), used to model flow in unsaturated porous media. This alternative is named Cell Method (CM). The CM is based on a preliminary reformulation of the mathematical model in a partially discrete form, which preserves as much as possible the physical and geometrical content of the original problem, and is made possible by the existence and properties of a common mathematical structure of field theories. The goal is to maintain the focus, both in the modelling and discretization steps, on the physics of the problem.… More >

  • Open Access

    ARTICLE

    Multi-Scale Modelling and Simulation of Textile Reinforced Materials

    G. Haasemann1, M. Kästner1 and V. Ulbricht1

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 131-146, 2006, DOI:10.3970/cmc.2006.003.131

    Abstract Novel textile reinforced composites provide an extremely high adaptability and allow for the development of materials whose features can be adjusted precisely to certain applications. A successful structural and material design process requires an integrated simulation of the material behavior, the estimation of the effective properties which need to be assigned to the macroscopic model and the resulting features of the component. In this context two efficient modelling strategies - the Binary Model (Carter, Cox, and Fleck (1994)) and the Extended Finite Element Method (X-FEM) (Moës, Cloirec, Cartraud, and Remacle (2003)) - are used to model materials which exhibit a… More >

  • Open Access

    ARTICLE

    A First-Principles Computational Framework for Liquid Mineral Systems

    B.B. Karki1, D. Bhattarai1, L. Stixrude2

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 107-118, 2006, DOI:10.3970/cmc.2006.003.107

    Abstract Computer modeling of liquid phase poses tremendous challenge: It requires a relatively large simulation size, long simulation time and accurate interatomic interaction and as such, it produces massive amounts of data. Recent advances in hardware and software have made it possible to accurately simulate the liquid phase. This paper reports the details of methodology used in the context of liquid simulations and subsequent analysis of the output data. For illustration purpose, we consider the results for the liquid phases of two geophysically relevant materials, namely MgO and MgSiO3. The simulations are performed using the parallel first-principles molecular dynamics (FPMD) technique… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Elastic Behaviour and Failure Processes in Heterogeneous Material

    Lingfei Gao1, Xiaoping Zheng1,2, Zhenhan Yao1

    CMC-Computers, Materials & Continua, Vol.3, No.1, pp. 25-36, 2006, DOI:10.3970/cmc.2007.003.025

    Abstract A general numerical approach is developed to model the elastic behaviours and failure processes of heterogeneous materials. The heterogeneous material body is assumed composed of a large number of convex polygon lattices with different phases. These phases are locally isotropic and elastic-brittle with the different lattices displaying variable material parameters and a Weibull-type statistical distribution. When the effective strain exceeds a local fracture criterion, the full lattice exhibits failure uniformly, and this is modelled by assuming a very small Young modulus value. An auto-select loading method is employed to model the failure process. The proposed hybrid approach is applied to… More >

  • Open Access

    ARTICLE

    Two-dimensional Corrosion Pit Initiation and Growth Simulation Model

    Ramana M. Pidaparti1, Anuj Puri2, Mathew J. Palakal2, Ajay Kashyap3

    CMC-Computers, Materials & Continua, Vol.2, No.1, pp. 65-76, 2005, DOI:10.3970/cmc.2005.002.065

    Abstract A two-dimensional corrosion initiation and growth model for aircraft aluminum materials is developed. The model takes into account the electro-chemical parameters as well as specific rules governing corrosion mechanisms. The simulation program is implemented in a cellular automata framework. The corrosion initiation and growth patterns obtained from simulations are compared qualitatively and quantitatively to the experimental data obtained from the Center for Materials Diagnostics at the University of Dayton Research Institute, Dayton. The results indicate that the present model effectively captures the corrosion damage process including initiation and growth. The effects of various electro-chemical parameters on the damage growth obtained… More >

  • Open Access

    ARTICLE

    Simulation Studies of A 76MM Hydrocyclone

    K.Udaya Bhaskar1,2, Sumit Tiwari2, N. Ramakrishnan2

    CMC-Computers, Materials & Continua, Vol.2, No.1, pp. 13-22, 2005, DOI:10.3970/cmc.2005.002.013

    Abstract The investigation pertains to establishing a simulation methodology for understanding the separation characteristics of a typical hydrocyclone where the work was carried out using a commercially available CFD software. The studies included water flow profiles, water throughput {\&} product split, particle distribution etc. and the simulated results are further validated with suitably performed experiments. The work essentially highlights the performance of the hydrocyclone using numerical studies where water is used as a primary phase and solid particles as secondary ones. This methodology is expected to be useful in the design of hydrocyclones and optimizing the processes. More >

  • Open Access

    ARTICLE

    Velocity Fluctuations in a Particle-Laden Turbulent Flow over a Backward-Facing Step

    B. Wang1, H.Q. Zhang1, C.K. Chan2, X.L. Wang1

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 275-288, 2004, DOI:10.3970/cmc.2004.001.275

    Abstract Dilute gas-particle turbulent flow over a backward-facing step is numerically simulated. Large Eddy Simulation (LES) is used for the continuous phase and a Lagrangian trajectory method is adopted for the particle phase. Four typical locations in the flow field are chosen to investigate the two-phase velocity fluctuations. Time-series velocities of the gas phase with particles of different sizes are obtained. Velocity of the small particles is found to be similar to that of the gas phase, while high frequency noise exists in the velocity of the large particles. While the mean and rms velocities of the gas phase and small… More >

Displaying 1151-1160 on page 116 of 1162. Per Page