Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (49)
  • Open Access

    ARTICLE

    Thermal Radiation Effects on 2D Stagnation Point Flow of a Heated Stretchable Sheet with Variable Viscosity and MHD in a Porous Medium

    Muhammad Abaid Ur Rehman1,*, Muhammad Asif Farooq1, Ahmed M. Hassan2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 263-286, 2024, DOI:10.32604/fhmt.2023.044587

    Abstract This paper proposes a mathematical modeling approach to examine the two-dimensional flow stagnates at over a heated stretchable sheet in a porous medium influenced by nonlinear thermal radiation, variable viscosity, and MHD. This study’s main purpose is to examine how thermal radiation and varying viscosity affect fluid flow motion. Additionally, we consider the convective boundary conditions and incorporate the gyrotactic microorganisms equation, which describes microorganism behavior in response to fluid flow. The partial differential equations (PDEs) that represent the conservation equations for mass, momentum, energy, and microorganisms are then converted into a system of coupled ordinary differential equations (ODEs) through… More >

  • Open Access

    ARTICLE

    HOT WATER COOLED HEAT SINKS FOR EFFICIENT DATA CENTER COOLING: TOWARDS ELECTRONIC COOLING WITH HIGH EXERGETIC UTILITY

    Peter Kastena, Severin Zimmermanna, Manish K. Tiwaria, Bruno Michelb, Dimos Poulikakosa,*

    Frontiers in Heat and Mass Transfer, Vol.1, No.2, pp. 1-10, 2010, DOI:10.5098/hmt.v1.2.3006

    Abstract Electronic data center cooling using hot water is proposed for high system exergetic utility. The proof-of-principle is provided by numerically modeling a manifold micro-channel heat sink for cooling microprocessors of a data center. An easily achievable 0.5l/min per chip water flow, with 60°C inlet water temperature, is found sufficient to address the typical data center thermal loads. A maximum temperature difference of ~8°C was found between the solid and liquid, confirming small exergetic destruction due to heat transport across a temperature differential. The high water outlet temperature from the heat sink opens the possibility of waste heat recovery applications. More >

  • Open Access

    ARTICLE

    THERMOHYDRAULIC CHARACTERISTICS OF A SINGLE-PHASE MICROCHANNEL HEAT SINK COATED WITH COPPER NANOWIRES

    M. Yakut Alia,*, Fanghao Yanga, Ruixian Fanga, Chen Lia, Jamil Khana,†

    Frontiers in Heat and Mass Transfer, Vol.2, No.3, pp. 1-11, 2011, DOI:10.5098/hmt.v2.3.3003

    Abstract This study experimentally investigates single phase heat transfer and pressure drop characteristics of a shallow rectangular microchannel heat sink whose surface is enhanced with copper nanowires (CuNWs). The hydraulic diameter of the channel is 672 μm and the bottom wall is coated with Cu nanowires (CuNWs) of 200 nm in diameter and 50 μm in length. CuNWs are grown on the Cu heat sink by electrochemical synthesis technique which is inexpensive and readily scalable. The heat transfer and pressure drop results of CuNWs enhanced heat sink are compared with that of bare copper surface heat sink using deionized (DI) water… More >

  • Open Access

    ARTICLE

    HEAT EXCHANGER DESIGN METHODOLOGY FOR ELECTRONIC HEAT SINKS

    Ralph L. Webb

    Frontiers in Heat and Mass Transfer, Vol.2, No.2, pp. 1-5, 2011, DOI:10.5098/hmt.v2.2.3001

    Abstract This paper discusses the “Inlet Temperature Difference” (ITD) based heat-exchanger (and its variants) design methodology frequently used by designers of electronic heat sinks. The methodology is at variance with the accepted methodology recommended in standard heat-transfer text books – the “Log-Mean Temperature Difference” (LMTD), or the equivalent “effectiveness-NTU” design method. The purpose of this paper is to evaluate and discuss the ITD based design methodology and its deficiencies. The paper shows that the ITD based method is an approximation at best. Variants of the method can lead to either under or over prediction of the heat transfer rate. Its shortcomings… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF FILM COOLING WITH CHEMICAL HEAT SINK

    Keyong Chenga,b,*, Chunzi Zhangc, Wei Chena,b, Shiqiang Lianga,†, Yongxian Guoa,d, Xiulan Huaia

    Frontiers in Heat and Mass Transfer, Vol.3, No.3, pp. 1-6, 2012, DOI:10.5098/hmt.v3.3.3003

    Abstract A film cooling method with chemical heat sink for gas turbine blades is proposed. In this method, an endothermic reaction of cooling stream occurs due to the heating from the mainstream, which leads to an improvement of film cooling effectiveness. The proposed method at different blowing ratios are computed and compared with the conventional one. The simulation result shows that due to the exsitence of the chemical heat sink the proposed method can enhance film cooling effectiveness not only in the streamwise direction, but also in the spanwise direction. More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF FLUID FLOW AND HEAT TRANSFER IN A MEMS-BASED MICRO CHANNEL HEAT SINK

    Md. Farhad Ismaila,*, M.A.I. Rashidb , M. Mahbubb

    Frontiers in Heat and Mass Transfer, Vol.3, No.3, pp. 1-8, 2012, DOI:10.5098/hmt.v3.3.3002

    Abstract Carbon nanotube (CNT) has been proven to be an effective material for the thermal management of MEMS-based devices due to its superior thermal conductivity. At the same time, micro-channel heat-sinks are widely used in electronic products as a high performance heat transfer device because of its simple construction, easy fabrication process and effective heat removal capability. A numerical study has been carried out to investigate the thermal-fluid characteristics of the aligned and staggered MWCNT (multi walled CNT) based micro pin fins having 650 µm long with hydraulic diameter of ~130 µm. Average heat transfer coefficients have been obtained for effective… More >

  • Open Access

    ARTICLE

    Chemically Radiative MHD Flow of a Micropolar Nanofluid over a Stretching/Shrinking Sheet with a Heat Source or Sink

    Parakapali Roja1, Shaik Mohammed Ibrahim2, Thummala Sankar Reddy3, Giulio Lorenzini4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 257-274, 2024, DOI:10.32604/fdmp.2023.042283

    Abstract This study examines the behavior of a micropolar nanofluid flowing over a sheet in the presence of a transverse magnetic field and thermal effects. In addition, chemical (first-order homogeneous) reactions are taken into account. A similarity transformation is used to reduce the system of governing coupled non-linear partial differential equations (PDEs), which account for the transport of mass, momentum, angular momentum, energy and species, to a set of non-linear ordinary differential equations (ODEs). The Runge-Kutta method along with shooting method is used to solve them. The impact of several parameters is evaluated. It is shown that the micro-rotational velocity of… More >

  • Open Access

    ARTICLE

    EFFECT OF DIFFERENT SHAPES ON CHARACTERISTICS OF CONJUGATE HEAT TRANSFER OF MICRO CHANNEL HEAT SINK

    Ankit Kanor, R Manimaran*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-5, 2016, DOI:10.5098/hmt.7.25

    Abstract One of the effective liquid cooling techniques for microelectronic devices is attaching micro channel heat sink to the inactive side of chip. A micro channel heat sink is a device that decreases temperature by flowing coolant through micro channels. The present study focuses on the conjugate heat transfer analyses for different cross-sections (trapezoidal, hexagonal, octagonal and circular).After present study is validated with the published result in the literature, the comparative study of parallel and counter flow configuration is performed. Different geometries are modeled using CATIA V5 software and simulated in ANSYS Fluent R14. From these CFD simulations, preferred configuration of… More >

  • Open Access

    ARTICLE

    THE EFFECTS OF THERMAL RADIATION AND NON-UNIFORM HEAT SOURCE/SINK ON STRETCHING SHEET EMBEDDED IN NON-DARCIAN POROUS MEDIUM

    Wubshet Ibrahima,∗, Bandari Shankarb

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-8, 2016, DOI:10.5098/hmt.7.37

    Abstract The Numerical analysis of magneto-hydrodynamics (MHD) boundary layer flow and heat transfer of incompressible, viscous and electrically conducting fluid is presented. The flow is due to continuously stretching permeable surface embedded in non-Darcian porous medium in the presence of transverse magnetic field, thermal radiation and non-uniform heat source/sink. The flow equations in the porous medium are governed by ForchheimerBrinkman extended Darcy model. A similarity transformation is used to transform partial differential equations into a coupled higher order non-linear ordinary differential equations. These equations are solved numerically using implicit finite difference scheme called Keller-Box method. The effects of the governing parameters… More >

  • Open Access

    ARTICLE

    Unweighted Voting Method to Detect Sinkhole Attack in RPL-Based Internet of Things Networks

    Shadi Al-Sarawi1, Mohammed Anbar1,*, Basim Ahmad Alabsi2, Mohammad Adnan Aladaileh3, Shaza Dawood Ahmed Rihan2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 491-515, 2023, DOI:10.32604/cmc.2023.041108

    Abstract The Internet of Things (IoT) consists of interconnected smart devices communicating and collecting data. The Routing Protocol for Low-Power and Lossy Networks (RPL) is the standard protocol for Internet Protocol Version 6 (IPv6) in the IoT. However, RPL is vulnerable to various attacks, including the sinkhole attack, which disrupts the network by manipulating routing information. This paper proposes the Unweighted Voting Method (UVM) for sinkhole node identification, utilizing three key behavioral indicators: DODAG Information Object (DIO) Transaction Frequency, Rank Harmony, and Power Consumption. These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant… More >

Displaying 1-10 on page 1 of 49. Per Page