Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    ARTICLE

    A Transformer-Based Deep Learning Framework with Semantic Encoding and Syntax-Aware LSTM for Fake Electronic News Detection

    Hamza Murad Khan1, Shakila Basheer2, Mohammad Tabrez Quasim3, Raja`a Al-Naimi4, Vijaykumar Varadarajan5, Anwar Khan1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.069327 - 10 November 2025

    Abstract With the increasing growth of online news, fake electronic news detection has become one of the most important paradigms of modern research. Traditional electronic news detection techniques are generally based on contextual understanding, sequential dependencies, and/or data imbalance. This makes distinction between genuine and fabricated news a challenging task. To address this problem, we propose a novel hybrid architecture, T5-SA-LSTM, which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attention-enhanced (SA) Long Short-Term Memory (LSTM). The LSTM is trained using the Adam optimizer, which provides faster and more stable convergence compared… More >

  • Open Access

    ARTICLE

    SMOTE-Optimized Machine Learning Framework for Predicting Retention in Workforce Development Training

    Abdulaziz Alshahrani*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 4067-4090, 2025, DOI:10.32604/cmc.2025.065211 - 23 September 2025

    Abstract High dropout rates in short-term job skills training programs hinder workforce development. This study applies machine learning to predict program completion while addressing class imbalance challenges. A dataset of 6548 records with 24 demographic, educational, program-specific, and employment-related features was analyzed. Data preprocessing involved cleaning, encoding categorical variables, and balancing the dataset using the Synthetic Minority Oversampling Technique (SMOTE), as only 15.9% of participants were dropouts. six machine learning models—Logistic Regression, Random Forest, Support Vector Machine, K-Nearest Neighbors, Naïve Bayes, and XGBoost—were evaluated on both balanced and unbalanced datasets using an 80-20 train-test split. Performance More >

  • Open Access

    ARTICLE

    Addressing Modern Cybersecurity Challenges: A Hybrid Machine Learning and Deep Learning Approach for Network Intrusion Detection

    Khadija Bouzaachane1,*, El Mahdi El Guarmah2, Abdullah M. Alnajim3, Sheroz Khan4

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2391-2410, 2025, DOI:10.32604/cmc.2025.065031 - 03 July 2025

    Abstract The rapid increase in the number of Internet of Things (IoT) devices, coupled with a rise in sophisticated cyberattacks, demands robust intrusion detection systems. This study presents a holistic, intelligent intrusion detection system. It uses a combined method that integrates machine learning (ML) and deep learning (DL) techniques to improve the protection of contemporary information technology (IT) systems. Unlike traditional signature-based or single-model methods, this system integrates the strengths of ensemble learning for binary classification and deep learning for multi-class classification. This combination provides a more nuanced and adaptable defense. The research utilizes the NF-UQ-NIDS-v2… More >

  • Open Access

    ARTICLE

    XGBoost-Liver: An Intelligent Integrated Features Approach for Classifying Liver Diseases Using Ensemble XGBoost Training Model

    Sumaiya Noor1, Salman A. AlQahtani2, Salman Khan3,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1435-1450, 2025, DOI:10.32604/cmc.2025.061700 - 26 March 2025

    Abstract The liver is a crucial gland and the second-largest organ in the human body and also essential in digestion, metabolism, detoxification, and immunity. Liver diseases result from factors such as viral infections, obesity, alcohol consumption, injuries, or genetic predispositions. Pose significant health risks and demand timely diagnosis and treatment to enhance survival rates. Traditionally, diagnosing liver diseases relied heavily on clinical expertise, often leading to subjective, challenging, and time-intensive processes. However, early detection is essential for effective intervention, and advancements in machine learning (ML) have demonstrated remarkable success in predicting various conditions, including Chronic Obstructive… More >

  • Open Access

    ARTICLE

    Addressing Imbalance in Health Datasets: A New Method NR-Clustering SMOTE and Distance Metric Modification

    Hairani Hairani1,2, Triyanna Widiyaningtyas1,*, Didik Dwi Prasetya1, Afrig Aminuddin3

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2931-2949, 2025, DOI:10.32604/cmc.2024.060837 - 17 February 2025

    Abstract An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Technique (SMOTE) was developed to address the problem of imbalanced data. Over time, several weaknesses of the SMOTE method have been identified in generating synthetic minority class data, such as overlapping, noise, and small disjuncts. However, these studies generally focus on only one of SMOTE’s weaknesses: noise or overlapping. Therefore, this study addresses both issues simultaneously by tackling noise and overlapping in SMOTE-generated data. This study proposes a combined approach of… More >

  • Open Access

    ARTICLE

    Enhancing Network Security: Leveraging Machine Learning for Integrated Protection and Intrusion Detection

    Nada Mohammed Murad1, Adnan Yousif Dawod2, Saadaldeen Rashid Ahmed3,4,*, Ravi Sekhar5, Pritesh Shah5

    Intelligent Automation & Soft Computing, Vol.40, pp. 1-27, 2025, DOI:10.32604/iasc.2024.058624 - 10 January 2025

    Abstract This study introduces an innovative hybrid approach that integrates deep learning with blockchain technology to improve cybersecurity, focusing on network intrusion detection systems (NIDS). The main goal is to overcome the shortcomings of conventional intrusion detection techniques by developing a more flexible and robust security architecture. We use seven unique machine learning models to improve detection skills, emphasizing data quality, traceability, and transparency, facilitated by a blockchain layer that safeguards against data modification and ensures auditability. Our technique employs the Synthetic Minority Oversampling Technique (SMOTE) to equilibrate the dataset, therefore mitigating prevalent class imbalance difficulties… More >

  • Open Access

    ARTICLE

    RE-SMOTE: A Novel Imbalanced Sampling Method Based on SMOTE with Radius Estimation

    Dazhi E1, Jiale Liu2, Ming Zhang1,*, Huiyuan Jiang2, Keming Mao2

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3853-3880, 2024, DOI:10.32604/cmc.2024.057538 - 19 December 2024

    Abstract Imbalance is a distinctive feature of many datasets, and how to make the dataset balanced become a hot topic in the machine learning field. The Synthetic Minority Oversampling Technique (SMOTE) is the classical method to solve this problem. Although much research has been conducted on SMOTE, there is still the problem of synthetic sample singularity. To solve the issues of class imbalance and diversity of generated samples, this paper proposes a hybrid resampling method for binary imbalanced data sets, RE-SMOTE, which is designed based on the improvements of two oversampling methods parameter-free SMOTE (PF-SMOTE) and… More >

  • Open Access

    ARTICLE

    A Novel Framework for Learning and Classifying the Imbalanced Multi-Label Data

    P. K. A. Chitra1, S. Appavu alias Balamurugan2, S. Geetha3, Seifedine Kadry4,5,6, Jungeun Kim7,*, Keejun Han8

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1367-1385, 2024, DOI:10.32604/csse.2023.034373 - 13 September 2024

    Abstract A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning. The main objective of this work is to create a novel framework for learning and classifying imbalanced multi-label data. This work proposes a framework of two phases. The imbalanced distribution of the multi-label dataset is addressed through the proposed Borderline MLSMOTE resampling method in phase 1. Later, an adaptive weighted l21 norm regularized (Elastic-net) multi-label logistic regression is used to predict unseen samples in phase 2. The proposed… More >

  • Open Access

    ARTICLE

    Improving Prediction of Chronic Kidney Disease Using KNN Imputed SMOTE Features and TrioNet Model

    Nazik Alturki1, Abdulaziz Altamimi2, Muhammad Umer3,*, Oumaima Saidani1, Amal Alshardan1, Shtwai Alsubai4, Marwan Omar5, Imran Ashraf6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3513-3534, 2024, DOI:10.32604/cmes.2023.045868 - 11 March 2024

    Abstract Chronic kidney disease (CKD) is a major health concern today, requiring early and accurate diagnosis. Machine learning has emerged as a powerful tool for disease detection, and medical professionals are increasingly using ML classifier algorithms to identify CKD early. This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California, UC Irvine Machine Learning repository. The research introduces TrioNet, an ensemble model combining extreme gradient boosting, random forest, and extra tree classifier, which excels in providing highly accurate predictions for CKD. Furthermore, K nearest neighbor (KNN) More >

  • Open Access

    ARTICLE

    Cross-Project Software Defect Prediction Based on SMOTE and Deep Canonical Correlation Analysis

    Xin Fan1,2, Shuqing Zhang1,2,*, Kaisheng Wu1,2, Wei Zheng1,2, Yu Ge1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1687-1711, 2024, DOI:10.32604/cmc.2023.046187 - 27 February 2024

    Abstract Cross-Project Defect Prediction (CPDP) is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project. However, existing CPDP methods only consider linear correlations between features (indicators) of the source and target projects. These models are not capable of evaluating non-linear correlations between features when they exist, for example, when there are differences in data distributions between the source and target projects. As a result, the performance of such CPDP models is compromised. In this paper, this paper proposes a novel CPDP method based on… More >

Displaying 1-10 on page 1 of 29. Per Page