Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    ARTICLE

    Stroke Risk Assessment Decision-Making Using a Machine Learning Model: Logistic-AdaBoost

    Congjun Rao1, Mengxi Li1, Tingting Huang2,*, Feiyu Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 699-724, 2024, DOI:10.32604/cmes.2023.044898 - 30 December 2023

    Abstract Stroke is a chronic cerebrovascular disease that carries a high risk. Stroke risk assessment is of great significance in preventing, reversing and reducing the spread and the health hazards caused by stroke. Aiming to objectively predict and identify strokes, this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost (Logistic-AB) based on machine learning. First, the categorical boosting (CatBoost) method is used to perform feature selection for all features of stroke, and 8 main features are selected to form a new index evaluation system to predict the risk of stroke. Second, the borderline… More >

  • Open Access

    ARTICLE

    Internet of Things (IoT) Security Enhancement Using XGboost Machine Learning Techniques

    Dana F. Doghramachi1,*, Siddeeq Y. Ameen2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 717-732, 2023, DOI:10.32604/cmc.2023.041186 - 31 October 2023

    Abstract The rapid adoption of the Internet of Things (IoT) across industries has revolutionized daily life by providing essential services and leisure activities. However, the inadequate software protection in IoT devices exposes them to cyberattacks with severe consequences. Intrusion Detection Systems (IDS) are vital in mitigating these risks by detecting abnormal network behavior and monitoring safe network traffic. The security research community has shown particular interest in leveraging Machine Learning (ML) approaches to develop practical IDS applications for general cyber networks and IoT environments. However, most available datasets related to Industrial IoT suffer from imbalanced class… More >

  • Open Access

    ARTICLE

    A Stacked Ensemble Deep Learning Approach for Imbalanced Multi-Class Water Quality Index Prediction

    Wen Yee Wong1, Khairunnisa Hasikin1,*, Anis Salwa Mohd Khairuddin2, Sarah Abdul Razak3, Hanee Farzana Hizaddin4, Mohd Istajib Mokhtar5, Muhammad Mokhzaini Azizan6

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1361-1384, 2023, DOI:10.32604/cmc.2023.038045 - 30 August 2023

    Abstract A common difficulty in building prediction models with realworld environmental datasets is the skewed distribution of classes. There are significantly more samples for day-to-day classes, while rare events such as polluted classes are uncommon. Consequently, the limited availability of minority outcomes lowers the classifier’s overall reliability. This study assesses the capability of machine learning (ML) algorithms in tackling imbalanced water quality data based on the metrics of precision, recall, and F1 score. It intends to balance the misled accuracy towards the majority of data. Hence, 10 ML algorithms of its performance are compared. The classifiers… More >

  • Open Access

    ARTICLE

    A Model Training Method for DDoS Detection Using CTGAN under 5GC Traffic

    Yea-Sul Kim1, Ye-Eun Kim1, Hwankuk Kim2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1125-1147, 2023, DOI:10.32604/csse.2023.039550 - 26 May 2023

    Abstract With the commercialization of 5th-generation mobile communications (5G) networks, a large-scale internet of things (IoT) environment is being built. Security is becoming increasingly crucial in 5G network environments due to the growing risk of various distributed denial of service (DDoS) attacks across vast IoT devices. Recently, research on automated intrusion detection using machine learning (ML) for 5G environments has been actively conducted. However, 5G traffic has insufficient data due to privacy protection problems and imbalance problems with significantly fewer attack data. If this data is used to train an ML model, it will likely suffer… More >

  • Open Access

    ARTICLE

    Machine Learning and Synthetic Minority Oversampling Techniques for Imbalanced Data: Improving Machine Failure Prediction

    Yap Bee Wah1,5,*, Azlan Ismail1,2, Nur Niswah Naslina Azid3, Jafreezal Jaafar4, Izzatdin Abdul Aziz4, Mohd Hilmi Hasan4, Jasni Mohamad Zain1,2

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4821-4841, 2023, DOI:10.32604/cmc.2023.034470 - 29 April 2023

    Abstract Prediction of machine failure is challenging as the dataset is often imbalanced with a low failure rate. The common approach to handle classification involving imbalanced data is to balance the data using a sampling approach such as random undersampling, random oversampling, or Synthetic Minority Oversampling Technique (SMOTE) algorithms. This paper compared the classification performance of three popular classifiers (Logistic Regression, Gaussian Naïve Bayes, and Support Vector Machine) in predicting machine failure in the Oil and Gas industry. The original machine failure dataset consists of 20,473 hourly data and is imbalanced with 19945 (97%) ‘non-failure’ and… More >

  • Open Access

    ARTICLE

    Type 2 Diabetes Risk Prediction Using Deep Convolutional Neural Network Based-Bayesian Optimization

    Alawi Alqushaibi1,2,*, Mohd Hilmi Hasan1,2, Said Jadid Abdulkadir1,2, Amgad Muneer1,2, Mohammed Gamal1,2, Qasem Al-Tashi3, Shakirah Mohd Taib1,2, Hitham Alhussian1,2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3223-3238, 2023, DOI:10.32604/cmc.2023.035655 - 31 March 2023

    Abstract Diabetes mellitus is a long-term condition characterized by hyperglycemia. It could lead to plenty of difficulties. According to rising morbidity in recent years, the world’s diabetic patients will exceed 642 million by 2040, implying that one out of every ten persons will be diabetic. There is no doubt that this startling figure requires immediate attention from industry and academia to promote innovation and growth in diabetes risk prediction to save individuals’ lives. Due to its rapid development, deep learning (DL) was used to predict numerous diseases. However, DL methods still suffer from their limited prediction… More >

  • Open Access

    ARTICLE

    BS-SC Model: A Novel Method for Predicting Child Abuse Using Borderline-SMOTE Enabled Stacking Classifier

    Saravanan Parthasarathy, Arun Raj Lakshminarayanan*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1311-1336, 2023, DOI:10.32604/csse.2023.034910 - 09 February 2023

    Abstract For a long time, legal entities have developed and used crime prediction methodologies. The techniques are frequently updated based on crime evaluations and responses from scientific communities. There is a need to develop type-based crime prediction methodologies that can be used to address issues at the subgroup level. Child maltreatment is not adequately addressed because children are voiceless. As a result, the possibility of developing a model for predicting child abuse was investigated in this study. Various exploratory analysis methods were used to examine the city of Chicago’s child abuse events. The data set was… More >

  • Open Access

    ARTICLE

    Hybrid Grey Wolf and Dipper Throated Optimization in Network Intrusion Detection Systems

    Reem Alkanhel1,*, Doaa Sami Khafaga2, El-Sayed M. El-kenawy3, Abdelaziz A. Abdelhamid4,5, Abdelhameed Ibrahim6, Rashid Amin7, Mostafa Abotaleb8, B. M. El-den6

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2695-2709, 2023, DOI:10.32604/cmc.2023.033153 - 31 October 2022

    Abstract The Internet of Things (IoT) is a modern approach that enables connection with a wide variety of devices remotely. Due to the resource constraints and open nature of IoT nodes, the routing protocol for low power and lossy (RPL) networks may be vulnerable to several routing attacks. That’s why a network intrusion detection system (NIDS) is needed to guard against routing assaults on RPL-based IoT networks. The imbalance between the false and valid attacks in the training set degrades the performance of machine learning employed to detect network attacks. Therefore, we propose in this paper… More >

  • Open Access

    ARTICLE

    An Imbalanced Dataset and Class Overlapping Classification Model for Big Data

    Mini Prince1,*, P. M. Joe Prathap2

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1009-1024, 2023, DOI:10.32604/csse.2023.024277 - 15 June 2022

    Abstract Most modern technologies, such as social media, smart cities, and the internet of things (IoT), rely on big data. When big data is used in the real-world applications, two data challenges such as class overlap and class imbalance arises. When dealing with large datasets, most traditional classifiers are stuck in the local optimum problem. As a result, it’s necessary to look into new methods for dealing with large data collections. Several solutions have been proposed for overcoming this issue. The rapid growth of the available data threatens to limit the usefulness of many traditional methods.… More >

  • Open Access

    ARTICLE

    Improving Intrusion Detection in UAV Communication Using an LSTM-SMOTE Classification Method

    Abdulrahman M. Abdulghani, Mokhles M. Abdulghani, Wilbur L. Walters, Khalid H. Abed*

    Journal of Cyber Security, Vol.4, No.4, pp. 287-298, 2022, DOI:10.32604/jcs.2023.042486 - 10 August 2023

    Abstract Unmanned Aerial Vehicles (UAVs) proliferate quickly and play a significant part in crucial tasks, so it is important to protect the security and integrity of UAV communication channels. Intrusion Detection Systems (IDSs) are required to protect the UAV communication infrastructure from unauthorized access and harmful actions. In this paper, we examine a new approach for enhancing intrusion detection in UAV communication channels by utilizing the Long Short-Term Memory network (LSTM) combined with the Synthetic Minority Oversampling Technique (SMOTE) algorithm, and this integration is the binary classification method (LSTM-SMOTE). We successfully achieved 99.83% detection accuracy by More >

Displaying 11-20 on page 2 of 29. Per Page