Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (178)
  • Open Access

    PROCEEDINGS

    Multiscale Modelling of Normal Fault Rupture-Soil-Foundation Interaction

    Lifan Chen1,*, Ning Guo1, Zhongxuan Yang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09709

    Abstract A multiscale approach [1] that couples the finite-element method (FEM) and the discrete-element method (DEM) is employed to model and analyse the earthquake fault rupture-soil-foundation interaction (FR-SFI) problem. In the approach, the soil constitutive responses are obtained from DEM solutions of representative volume elements (RVEs) embedded at the FEM integration points so as to effectively bypass the phenomenological hypotheses in conventional FEM simulations. The fault rupture surfaces and shear localization patterns under normal faults with or without foundation atop have been well captured by the multiscale approach and verified with available centrifuge experimental [2] and numerical results [3]. By examining… More >

  • Open Access

    PROCEEDINGS

    Efficient and Robust Temperature Field Simulation of Long-Distance Crude Oil Pipeline Based on Bayesian Neural Network and PDE

    Weixin Jiang1,*, Qing Yuan2, Zongze Li3, Junhua Gong3, Bo Yu4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.08861

    Abstract The hydraulic and thermal simulation of crude oil pipeline transportation is greatly significant for the safe transportation and accurate regulation of pipelines. With reasonable basic parameters, the solution of the traditional partial differential equation (PDE) for the axial soil temperature field on the pipeline can obtain accurate simulation results, yet it brings about a low calculation efficiency problem. In order to overcome the low-efficiency problem, an efficient and robust hybrid solution model for soil temperature field coupling with Bayesian neural network and PDE is proposed, which considers the dynamic changes of boundary conditions. Four models, including the proposed hybrid model,… More >

  • Open Access

    PROCEEDINGS

    Three-Dimensional Numerical Simulation of Large-Scale LandslideGenerated Surging Waves with a GPU‒Accelerated Soil‒Water Coupled SPH Model

    Can Huang1,*, Xiaoliang Wang1, Qingquan Liu1, Huaning Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09824

    Abstract Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslidegenerated water waves, is simulated to validate this… More >

  • Open Access

    ARTICLE

    Leveraging Gradient-Based Optimizer and Deep Learning for Automated Soil Classification Model

    Hadeel Alsolai1, Mohammed Rizwanullah2,*, Mashael Maashi3, Mahmoud Othman4, Amani A. Alneil2, Amgad Atta Abdelmageed2

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 975-992, 2023, DOI:10.32604/cmc.2023.037936

    Abstract Soil classification is one of the emanating topics and major concerns in many countries. As the population has been increasing at a rapid pace, the demand for food also increases dynamically. Common approaches used by agriculturalists are inadequate to satisfy the rising demand, and thus they have hindered soil cultivation. There comes a demand for computer-related soil classification methods to support agriculturalists. This study introduces a Gradient-Based Optimizer and Deep Learning (DL) for Automated Soil Classification (GBODL-ASC) technique. The presented GBODL-ASC technique identifies various kinds of soil using DL and computer vision approaches. In the presented GBODL-ASC technique, three major… More >

  • Open Access

    ARTICLE

    Integrated Use of Organic and Bio-fertilizers to Improve Yield and Fruit Quality of Olives Grown in Low Fertility Sandy Soil in an Arid Environment

    Bassam F. Alowaiesh1,*, M. M. Gad2, Mohamed Saleh M. Ali3

    Phyton-International Journal of Experimental Botany, Vol.92, No.6, pp. 1813-1829, 2023, DOI:10.32604/phyton.2023.026950

    Abstract Olive productivity should be improved through stimulating nutrition, particularly under poor fertility soils. Consequently, the objective of this study was to assess the efficacy of applying organic and bio-fertilizers on the physiological growth, yield and fruit quality of olive trees under newly reclaimed poor-fertility sandy soil in an arid environment. During a field experiment carried out at El-Qantara, North Sinai, Egypt over two consecutive seasons (2019–2020 and 2020–2021), olive Kalamata trees were evaluated under three organic fertilizer treatments alone or in combination with three bio-fertilizers treatments. Organic fertilizer was applied as goat manure (16.8 kg/tree/year), or olive pomace (8.5 kg/tree/year)… More >

  • Open Access

    ARTICLE

    Experimental Study for the Cementation Effect of Dust Soil by Using Soybean Urease

    Jianwei Zhang1, Yue Yin1, Lei Shi1, Yi Han2, Mi Zhou3,*, Xihong Zhang4

    Journal of Renewable Materials, Vol.11, No.6, pp. 2893-2911, 2023, DOI:10.32604/jrm.2023.025436

    Abstract Dust is an environmental and health hazard. In this study, a new technology for dust suppressant is introduced using soybean urease with an optimal cementing solution. Calcium carbonate is produced by soybean urease and cementing solution, which bonds the soil particles towards a dust suppressant. A laboratory wind tunnel test is carried out to examine its effectiveness and discover possible optimization solutions. Several factors, including soybean meal concentration, cementing solution concentration, and volume of solution per unit area, are examined to quantify their influences on soil transport mass, evaporation ratio, evaporation rate, surface strength, water retention ratio, and infiltration rate… More >

  • Open Access

    ARTICLE

    Remediation of Cu Contaminated Soil by Fe78Si9B13AP Permeability Reaction Barrier Combined with Electrokinetic Method

    Liefei Pei1,2, Xiangyun Zhang1, Zizhou Yuan1,*

    Journal of Renewable Materials, Vol.11, No.6, pp. 2969-2983, 2023, DOI:10.32604/jrm.2023.025760

    Abstract Iron-based amorphous crystalline powder Fe78Si9B13AP is used as a permeability reaction barrier (PRB) combined with an electrokinetic method (EK-PRB) to study the removal rate of Cu in contaminated soil. After treating Cucontaminated soil for 5 days under different voltage gradients and soil water content, the soil pH is between 3.1 and 7.2. The increase of voltage gradient and soil water content can effectively promote the movement of Cu2+ to the cathode. The voltage gradient is 3 V/cm, and the water content of 40% is considered to be an optional experimental condition. Therefore, under this condition, the effects of Fe78Si9B13AP and… More >

  • Open Access

    ARTICLE

    Weak Expansive Soil Physical Properties Modification by Means of a Cement-Jute Fiber

    Zisheng Yang1, Wendong Li1, Xuelei Cheng1,2,*, Ran Hai1, Shunqun Li3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2119-2130, 2023, DOI:10.32604/fdmp.2023.025444

    Abstract Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber. The tests have been conducted to analyze the liquid plastic limit, the particle distribution and the free expansion rate. The results show that: (1) With an increase in the cement-jute fiber content, the free expansion rate of the modified expansive soil gradually decreases, however, such a rate rebounds when the fiber content exceeds 0.5% and the cement content exceeds 6%. (2) With an increase in the cement percentage, the particle… More >

  • Open Access

    ARTICLE

    Evaluating the Effects of Sustainable Chemical and Organic Fertilizers with Water Saving Practice on Corn Production and Soil Characteristics

    Xuejun Zhang1,#, Muhammad Amjad Bashir2,#, Qurat-Ul-Ain Raza3, Xiaotong Liu1, Jianhang Luo1, Ying Zhao1, Qiuliang Lei4, Hafiz Muhammad Ali Raza2,3, Abdur Rehim2,3, Yucong Geng4, Hongbin Liu4,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.5, pp. 1349-1360, 2023, DOI:10.32604/phyton.2023.026952

    Abstract

    The rapidly growing world population, water shortage, and food security are promising problems for sustainable agriculture. Farmers adopt higher irrigation and fertilizer applications to increase crop production resulting in environmental pollution. This study aimed to identify the long-term effects of intelligent water and fertilizers used in corn yield and soil nutrient status. A series of field experiments were conducted for six years with treatments as: farmer accustomed to fertilization used as control (CON), fertilizer decrement (KF), fertilizer decrement + water-saving irrigation (BMP1); combined application of organic and inorganic fertilizer + water-saving irrigation (BMP2), and combined application of controlled-release fertilizer (BMP3).… More >

  • Open Access

    ARTICLE

    Soil Moisture Rather than Soil Nutrient Regulates the Belowground Bud Bank of Rhizomatous Species Psammochloa villosa in Arid Sand Dunes

    Yawei Dong1, Ziyue Guo1, Qun Ma2, Zhiming Xin3, Jin Tao1, Jiatai Tian1, Jinlei Zhu3, Zhiming Zhang1,*, Jianqiang Qian1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.5, pp. 1301-1309, 2023, DOI:10.32604/phyton.2023.027043

    Abstract In arid and semi-arid sand dune ecosystems, belowground bud bank plays an important role in population regeneration and vegetation restoration. However, the responses of belowground bud bank size and composition to sand burial and its induced changes in soil environmental factors have been rarely studied. In arid sand dunes of Northwestern China, we investigated belowground bud bank size and composition of the typical rhizomatous psammophyte Psammochloa villosa as well as three key soil environmental factors (soil moisture, total carbon and total nitrogen) under different depths of sand burial. Total buds and rhizome buds increased significantly with increasing burial depth, whereas… More >

Displaying 1-10 on page 1 of 178. Per Page