Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    Performance Evaluation of an Evaporative Cooling Pad for Humidification -Dehumidification Desalination

    Ibtissam El Aouni, Hicham Labrim, Elhoussaine Ouabida, Ahmed Ait Errouhi, Rachid El Bouayadi, Driss Zejli, Aouatif Saad*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2323-2335, 2024, DOI:10.32604/fdmp.2024.050611 - 23 September 2024

    Abstract The perfect combination of renewable energy and desalination technologies is the key to meeting water demands in a cost-effective, efficient and environmentally friendly way. The desalination technique by humidification-dehumidification is non-conventional approach suitable for areas with low infrastructure (such as rural and decentralized regions) since it does not require permanent maintenance. In this study, this technology is implemented by using solar energy as a source of thermal power. A seawater desalination unit is considered, which consists of a chamber with two evaporators (humidifiers), a wetted porous material made of a corrugated cellulose cardboard and a… More >

  • Open Access

    REVIEW

    Solar- and/or Radiative Cooling-Driven Thermoelectric Generators: A Critical Review

    Jinglong Wang, Lin Lu*, Kai Jiao

    Energy Engineering, Vol.121, No.10, pp. 2681-2718, 2024, DOI:10.32604/ee.2024.051051 - 11 September 2024

    Abstract Thermoelectric generators (TEGs) play a critical role in collecting renewable energy from the sun and deep space to generate clean electricity. With their environmentally friendly, reliable, and noise-free operation, TEGs offer diverse applications, including areas with limited power infrastructure, microelectronic devices, and wearable technology. The review thoroughly analyses TEG system configurations, performance, and applications driven by solar and/or radiative cooling, covering non-concentrating, concentrating, radiative cooling-driven, and dual-mode TEGs. Materials for solar absorbers and radiative coolers, simulation techniques, energy storage management, and thermal management strategies are explored. The integration of TEGs with combined heat and power More >

  • Open Access

    ARTICLE

    Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria

    Djeldjli Halima1,*, Benatiallah Djelloul1, Ghasri Mehdi2, Tanougast Camel3, Benatiallah Ali4, Benabdelkrim Bouchra1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4725-4740, 2024, DOI:10.32604/cmc.2024.051002 - 20 June 2024

    Abstract When designing solar systems and assessing the effectiveness of their many uses, estimating sun irradiance is a crucial first step. This study examined three approaches (ANN, GA-ANN, and ANFIS) for estimating daily global solar radiation (GSR) in the south of Algeria: Adrar, Ouargla, and Bechar. The proposed hybrid GA-ANN model, based on genetic algorithm-based optimization, was developed to improve the ANN model. The GA-ANN and ANFIS models performed better than the standalone ANN-based model, with GA-ANN being better suited for forecasting in all sites, and it performed the best with the best values in the… More > Graphic Abstract

    Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria

  • Open Access

    ARTICLE

    Bio-PCM Panels Composed of Renewable Materials Interact with Solar Heating Systems for Building Thermal Insulation

    Yosr Laatiri, Habib Sammouda, Fadhel Aloulou*

    Journal of Renewable Materials, Vol.12, No.4, pp. 771-798, 2024, DOI:10.32604/jrm.2024.047022 - 12 June 2024

    Abstract This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings. Our contribution is the creation of insulating composite panels made of bio-based phase change materials (bio-PCM is all from coconut oil), cement and renewable materials (treated wood fiber and organic clay). The inclusion of wood fibers improved the thermal properties; a simple 2% increase of wood fiber decreased the heat conductivity by approximately 23.42%. The issues of bio-PCM leakage in the cement mortar and a roughly 56.5% reduction in thermal… More > Graphic Abstract

    Bio-PCM Panels Composed of Renewable Materials Interact with Solar Heating Systems for Building Thermal Insulation

  • Open Access

    ARTICLE

    Techno-Economic Optimization of Novel Stand-Alone Renewable Based Electric Vehicle Charging Station near Bahria Town Karachi, Sindh Pakistan

    Aneel Kumar1, Mahesh Kumar1, Amir Mahmood Soomro1, Laveet Kumar2,*

    Energy Engineering, Vol.121, No.6, pp. 1439-1457, 2024, DOI:10.32604/ee.2024.049977 - 21 May 2024

    Abstract Electric vehicles (EVs) are the most interesting and innovative technology in the 21st century because of their enormous advantages, both technically and economically. Their emissions rate compared to fuel-based vehicles is negligible as they do not consume fuel and hence do not emit any harmful gases. However, their bulk production, adoption and lack of charging stations increase the stress of power stations due to modern-day lifestyles. If Electric vehicles demand increases drastically then conventional power stations will not bear their demand and if they generate electricity by conventional means it will be very costly and… More >

  • Open Access

    ARTICLE

    Electro-Optical Model of Soiling Effects on Photovoltaic Panels and Performance Implications

    A. Asbayou1,*, G.P. Smestad2, I. Ismail1, A. Soussi1, A. Elfanaoui1, L. Bouhouch1, A. Ihlal1

    Energy Engineering, Vol.121, No.2, pp. 243-258, 2024, DOI:10.32604/ee.2024.046409 - 25 January 2024

    Abstract In this paper, a detailed model of a photovoltaic (PV) panel is used to study the accumulation of dust on solar panels. The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass, as it increases the reflection of light by particles. This phenomenon, commonly known as the “soiling effect”, presents a significant challenge to PV systems on a global scale. Two basic models of the equivalent circuits of a solar cell can be found, namely the single-diode model and the two-diode models. The limitation of efficiency data in manufacturers’ datasheets has More > Graphic Abstract

    Electro-Optical Model of Soiling Effects on Photovoltaic Panels and Performance Implications

  • Open Access

    ARTICLE

    Spatial and Temporal Distribution Characteristics of Solar Energy Resources in Tibet

    Yanbo Shen1,2, Yang Gao3, Yueming Hu1,2, Xin Yao4, Wenzheng Yu4,*, Yubing Zhang4

    Energy Engineering, Vol.121, No.1, pp. 43-57, 2024, DOI:10.32604/ee.2023.041921 - 27 December 2023

    Abstract The Tibet Plateau is one of the regions with the richest solar energy resources in the world. In the process of achieving carbon neutrality in China, the development and utilization of solar energy resources in the region will play an important role. In this study, the gridded solar resource data with 1 km resolution in Tibet were obtained by spatial correction and downscaling of SMARTS model. On this basis, the spatial and temporal distribution characteristics of solar energy resources in the region in the past 30 years (1991–2020) are finely evaluated, and the annual global… More >

  • Open Access

    ARTICLE

    Heat Transfer Characteristics for Solar Energy Aspect on the Flow of Tangent Hyperbolic Hybrid Nanofluid over a Sensor Wedge and Stagnation Point Surface

    Asmaa Habib Alanzi, N. Ameer Ahammad*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 179-197, 2023, DOI:10.32604/fhmt.2023.042009 - 30 November 2023

    Abstract The conversion of solar radiation to thermal energy has recently attracted a lot of interest as the requirement for renewable heat and power grows. Due to their enhanced ability to promote heat transmission, nanofluids can significantly contribute to enhancing the efficiency of solar-thermal systems. This article focus solar energy aspect on the effects of the thermal radiation in the flow of a hyperbolic tangent nanofluid containing magnesium oxide (MgO) and silver (Ag) are the nanoparticle with the base fluid as kerosene through a wedge and stagnation. The system of hybrid nanofluid transport equations are transformed into… More >

  • Open Access

    ARTICLE

    Modeling and Optimization of Solar Collector Design for the Improvement of Solar-Air Source Heat Pump Building Heating System

    Jiarui Wu1, Yuzhen Kang2, Junxiao Feng1,*

    Energy Engineering, Vol.120, No.12, pp. 2783-2802, 2023, DOI:10.32604/ee.2023.029358 - 29 November 2023

    Abstract To enhance system stability, solar collectors have been integrated with air-source heat pumps. This integration facilitates the concurrent utilization of solar and air as energy sources for the system, leading to an improvement in the system's heat generation coefficient, overall efficiency, and stability. In this study, we focus on a residential building located in Lhasa as the target for heating purposes. Initially, we simulate and analyze a solar-air source heat pump combined heating system. Subsequently, while ensuring the system meets user requirements, we examine the influence of solar collector installation angles and collector area on More >

  • Open Access

    PROCEEDINGS

    Solar Energy Storage in Deep Saline Aquifers: Three-Dimensional HydroThermo Modeling and Feasibility Analyses

    Yanyong Wang1,2, Kunpeng Zhong1, Xiaoguang Wang1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09443

    Abstract The storage of solar energy in the subsurface in terms of heat is considered as a promising way for energy storage and conversion in future, which has a great potential to solve the temporal and spatial mismatch between energy demand and supply. Thermal energy storage in deep saline aquifers is capable to convert intermittent solar energy into high temperature stable geothermal energy. In this study, we propose a new solar energy storage and conversion system in which solar energy is firstly converted into heat using parabolic trough and then thermal energy storage in deep saline… More >

Displaying 1-10 on page 1 of 37. Per Page