Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Estimation of Higher Heating Value for MSW Using DSVM and BSOA

    Jithina Jose*, T. Sasipraba

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 573-588, 2023, DOI:10.32604/iasc.2023.030479

    Abstract In recent decades, the generation of Municipal Solid Waste (MSW) is steadily increasing due to urbanization and technological advancement. The collection and disposal of municipal solid waste cause considerable environmental degradation, making MSW management a global priority. Waste-to-energy (WTE) using thermochemical process has been identified as the key solution in this area. After evaluating many automated Higher Heating Value (HHV) prediction approaches, an Optimal Deep Learning-based HHV Prediction (ODL-HHVP) model for MSW management has been developed. The objective of the ODL-HHVP model is to forecast the HHV of municipal solid waste, based on its oxygen, water, hydrogen, carbon, nitrogen, sulphur… More >

  • Open Access

    ARTICLE

    Analysis of the Relationship between Mechanical Properties and Pore Structure of MSW Incineration Bottom Ash Fine Aggregate Concrete after Freeze-Thaw Cycles Based on the Gray Theory

    Peng Zhang1, Dongsheng Shi1,*, Ping Han1,2, Wenchao Jiang1,3

    Journal of Renewable Materials, Vol.11, No.2, pp. 669-688, 2023, DOI:10.32604/jrm.2022.022192

    Abstract The destruction of concrete building materials in severely cold regions of the north is more severely affected by freeze-thaw cycles, and the relationship between the mechanical properties and pore structure of concrete with fine aggregate from municipal solid waste (MSW) incineration bottom ash after freeze-thaw cycles is analyzed under the degree of freeze-thaw hazard variation. In this paper, the gray correlation method is used to calculate the correlation between the relative dynamic elastic modulus, compressive strength, and microscopic porosity parameters to speculate on the most important factors affecting their changes. The GM (1,1) model was established based on the compressive… More >

  • Open Access

    ARTICLE

    Bio-Inspired Gelatin-Based Adhesive Modified with Waterborne Polyurethane on Click Chemistry

    Xuechuan Wang1,2, Wenying Zhao1,2, Xugang Dang1,2,*, Yiqing Wang1,2, Huijie Zhang1,2,*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2747-2763, 2022, DOI:10.32604/jrm.2022.021555

    Abstract As a non-toxic, highly reactive biomass material, gelatin is wildly used as the component of biomass-based adhesive. However, like most aqueous adhesives, gelatin-based adhesives suffer from long solidifying time or high solidifying temperature due to the low volatility of water, which highly limits the application potential of gelatinbased adhesives. Inspired by the fast adhesion of marine organisms through the formation of chemical crosslinks, herein, a kind of low temperature curable eco-friendly gelatin-based adhesive with good adhesive properties and fast curing at low temperature is developed by introducing clicking chemical Diels-Alder (DA) reaction between blocked waterborne polyurethane (MWPU) and gelatin. The… More > Graphic Abstract

    Bio-Inspired Gelatin-Based Adhesive Modified with Waterborne Polyurethane on Click Chemistry

  • Open Access

    ARTICLE

    Fabrication of Baking-Free Bricks Using Gold Tailings and Cemented Materials with Low Alkalinity

    Jiamao Li1,2,*, Tao Si1, Lin Li1, Chuangang Fan1,*, Zhaofang He3, Yuandi Qian3

    Journal of Renewable Materials, Vol.10, No.11, pp. 3041-3058, 2022, DOI:10.32604/jrm.2022.020054

    Abstract The purpose of this paper was using gold mine tailings and cemented materials with low alkalinity to fabricate baking-free bricks. The obtained baking-free brick samples were evaluated by unconfined compressive strength (UCS), water absorption percentage, freezing-thawing cycle, and drying-wetting cycle. The microstructures of the baking-free brick samples were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. The baking-free brick specimens cured for 28 days with the addition of 10% mixing water consumption and 1:6 cement/tailing ratio tended to obtain favorable comprehensive properties such as a high compressive strength of 15.15 MPa, a low water absorption percentage of… More > Graphic Abstract

    Fabrication of Baking-Free Bricks Using Gold Tailings and Cemented Materials with Low Alkalinity

  • Open Access

    ARTICLE

    Assessment of the Solid Waste Disposal Method during COVID-19 Period Using the ELECTRE III Method in an Interval-Valued q-Rung Orthopair Fuzzy Approach

    Samayan Narayanamoorthy1, Arumugam Anuja1, J. V. Brainy1, Thangaraj Manirathinam1, Subramaniam Pragathi1, Thirumalai Nallasivan Parthasarathy1, Daekook Kang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1229-1261, 2022, DOI:10.32604/cmes.2022.019442

    Abstract As the quantity of garbage created every day rises, solid waste management has become the world’s most important issue. As a result, improper solid waste disposal and major sanitary issues develop, which are only detected after they have become dangerous. Due to the system’s lockdown during the COVID-19 pandemic, this scenario became much more uncertain. We are at the stage to develop and execute effective waste management procedures, as well as long-term policies and forward-thinking programmes that can work even in the most adverse of scenarios. We incorporate major solid waste (organic and inorganic solid wastes) approaches that actually perform… More >

  • Open Access

    ARTICLE

    Fluidity Influencing Factor Analysis and Ratio Optimization of New Filling Slurry Based on the Response Surface Method

    Guanfeng Chang, Xinzhu Hua*, Xiao Liu, Chen Li, Enqian Wang, Bingjun Sun

    Journal of Renewable Materials, Vol.10, No.5, pp. 1439-1458, 2022, DOI:10.32604/jrm.2022.018607

    Abstract The filling mining method is important in realizing the green mining of mineral resources. Aiming at the problems of land resource occupation, environmental pollution, and rational utilization of coal-based solid wastes such as coal gangue, fly ash, and desulfurization gypsum, a new paste filling material was developed with coal gangue, fly ash, and desulfurization gypsum as raw materials. The microstructure of the raw materials was analyzed by XRD and SEM. Combined with the Box-Behnken experimental design, the effect of each component on the fluidity of the filling slurry was analyzed through the response surface analysis. The significance of each component… More > Graphic Abstract

    Fluidity Influencing Factor Analysis and Ratio Optimization of New Filling Slurry Based on the Response Surface Method

  • Open Access

    ARTICLE

    Techno-Economic Analysis of a Grid-Connected Waste to Energy Gasification Plant: A Case Study

    Ahmed Abubakar Elwan*, Mohammed Hafiz Habibuddin

    Energy Engineering, Vol.118, No.6, pp. 1681-1701, 2021, DOI:10.32604/EE.2021.016291

    Abstract With population growth around the world, municipal waste disposal and continued energy demand becomes some of the major challenges to deal with. In order to address these, an approach is required for an optimal waste management system that offers the population benefit with a lower environmental impact. This study evaluates the technical-economic and environmental impact analysis of a grid-connected waste to energy (WtE) plant to power a Univerisiti Teknologi Malaysia (UTM) community. The energy recovery potential of the waste stream was assessed using the life cycle assessment (LCA) method with GaBiTM software (version 4). A technical, economic and environmental analysis… More >

  • Open Access

    ARTICLE

    Adaptive Multi-Layer Selective Ensemble Least Square Support Vector Machines with Applications

    Gang Yu1,4,5, Jian Tang2,*, Jian Zhang3, Zhonghui Wang6

    Intelligent Automation & Soft Computing, Vol.29, No.1, pp. 273-290, 2021, DOI:10.32604/iasc.2021.016981

    Abstract Kernel learning based on structure risk minimum can be employed to build a soft measuring model for analyzing small samples. However, it is difficult to select learning parameters, such as kernel parameter (KP) and regularization parameter (RP). In this paper, a soft measuring method is investigated to select learning parameters, which is based on adaptive multi-layer selective ensemble (AMLSEN) and least-square support vector machine (LSSVM). First, candidate kernels and RPs with K and R numbers are preset based on prior knowledge, and candidate sub-sub-models with K*R numbers are constructed through utilizing LSSVM. Second, the candidate sub-sub-models with same KPs and… More >

  • Open Access

    ARTICLE

    Solid Waste Collection System Selection Based on Sine Trigonometric Spherical Hesitant Fuzzy Aggregation Information

    Muhammad Naeem1, Aziz Khan2, Saleem Abdullah2,*, Shahzaib Ashraf3, Ahmad Ali Ahmad Khammash4

    Intelligent Automation & Soft Computing, Vol.28, No.2, pp. 459-476, 2021, DOI:10.32604/iasc.2021.016822

    Abstract Spherical fuzzy set (SFS) as one of several non-standard fuzzy sets, it introduces a number triplet (a,b,c) that satisfies the requirement a2 + b2 + c2 ≤ 1 to express membership grades. Due to the expression, SFS has a more extensive description space when describing fuzzy information, which attracts more attention in scientific research and engineering practice. Just for this reason, how to describe the fuzzy information more reasonably and perfectly is the hot that scholars pay close attention to. In view of this hot, in this paper, the notion of spherical hesitant fuzzy set is introduced as a generalization… More >

  • Open Access

    ARTICLE

    One-Step Synthesis of Magnetic Zeolite from Zinc Slag and Circulating Fluidized Bed Fly Ash for Degradation of Dye Wastewater

    Zhichao Han, Yaojun Zhang*, Panyang He

    Journal of Renewable Materials, Vol.8, No.4, pp. 405-416, 2020, DOI:10.32604/jrm.2020.09351

    Abstract In this study, a magnetic P zeolite was directly synthesized by utilization of industrial solid wastes of zinc slag (ZS) and circulating fluidized bed fly ash (CFBFA) via one-step hydrothermal method. The effects of different CFBFA/ZS ratios and hydrothermal times on the as-synthesized zeolite were investigated. The X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) results indicated that the magnetic P zeolite possessed well-defined crystals and superparamagnetism. The as-prepared zeolite was employed as a Fenton-like solid catalyst for degradation of direct green B dye wastewater. It was discovered that the magnetic P zeolite took the advantage of rapid separation and… More >

Displaying 11-20 on page 2 of 21. Per Page