Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,115)
  • Open Access

    ARTICLE

    Artificial Intelligence (AI)-Enabled Unmanned Aerial Vehicle (UAV) Systems for Optimizing User Connectivity in Sixth-Generation (6G) Ubiquitous Networks

    Zeeshan Ali Haider1, Inam Ullah2,*, Ahmad Abu Shareha3, Rashid Nasimov4, Sufyan Ali Memon5,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.071042 - 10 November 2025

    Abstract The advent of sixth-generation (6G) networks introduces unprecedented challenges in achieving seamless connectivity, ultra-low latency, and efficient resource management in highly dynamic environments. Although fifth-generation (5G) networks transformed mobile broadband and machine-type communications at massive scales, their properties of scaling, interference management, and latency remain a limitation in dense high mobility settings. To overcome these limitations, artificial intelligence (AI) and unmanned aerial vehicles (UAVs) have emerged as potential solutions to develop versatile, dynamic, and energy-efficient communication systems. The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning (CoRL) to manage an autonomous network.… More >

  • Open Access

    ARTICLE

    An Optimal Right-Turn Coordination System for Connected and Automated Vehicles at Urban Intersections

    Mahmudul Hasan1, Shuji Doman1, A. S. M. Bakibillah2, Md Abdus Samad Kamal1,*, Kou Yamada1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-17, 2026, DOI:10.32604/cmc.2025.070222 - 10 November 2025

    Abstract Traffic at urban intersections frequently encounters unexpected obstructions, resulting in congestion due to uncooperative and priority-based driving behavior. This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles (CAVs) at single-lane intersections, particularly in the context of left-hand side driving on roads. The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks. We consider that all approaching vehicles share relevant information through vehicular communications. The Intersection Coordination Unit (ICU) processes this information and communicates the optimal crossing or turning times to the vehicles. The primary objective of this… More >

  • Open Access

    ARTICLE

    Hybrid AI-IoT Framework with Digital Twin Integration for Predictive Urban Infrastructure Management in Smart Cities

    Abdullah Alourani1, Mehtab Alam2,*, Ashraf Ali3, Ihtiram Raza Khan4, Chandra Kanta Samal2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-32, 2026, DOI:10.32604/cmc.2025.070161 - 10 November 2025

    Abstract The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management. Earlier approaches have often advanced one dimension—such as Internet of Things (IoT)-based data acquisition, Artificial Intelligence (AI)-driven analytics, or digital twin visualization—without fully integrating these strands into a single operational loop. As a result, many existing solutions encounter bottlenecks in responsiveness, interoperability, and scalability, while also leaving concerns about data privacy unresolved. This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing, distributed intelligence, and simulation-based decision support. The… More >

  • Open Access

    REVIEW

    Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends

    Ameer Hamza, Robertas Damaševičius*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-41, 2026, DOI:10.32604/cmc.2025.069721 - 10 November 2025

    Abstract This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities, focusing on recent trends from 2022 to 2025. The primary objective is to evaluate methodological advancements, model performance, dataset usage, and existing challenges in developing clinically robust AI systems. We included peer-reviewed journal articles and high-impact conference papers published between 2022 and 2025, written in English, that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification. Excluded were non-open-access publications, books, and non-English articles. A structured search was… More >

  • Open Access

    REVIEW

    AI Agents in Finance and Fintech: A Scientific Review of Agent-Based Systems, Applications, and Future Horizons

    Maryan Rizinski1,2,*, Dimitar Trajanov1,2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-34, 2026, DOI:10.32604/cmc.2025.069678 - 10 November 2025

    Abstract Artificial intelligence (AI) is reshaping financial systems and services, as intelligent AI agents increasingly form the foundation of autonomous, goal-driven systems capable of reasoning, learning, and action. This review synthesizes recent research and developments in the application of AI agents across core financial domains. Specifically, it covers the deployment of agent-based AI in algorithmic trading, fraud detection, credit risk assessment, robo-advisory, and regulatory compliance (RegTech). The review focuses on advanced agent-based methodologies, including reinforcement learning, multi-agent systems, and autonomous decision-making frameworks, particularly those leveraging large language models (LLMs), contrasting these with traditional AI or purely… More >

  • Open Access

    ARTICLE

    Siphon-Based Divide-and-Conquer Policy for Enforcing Liveness on Petri Net Models of FMS Suffering from Deadlocks or Livelocks

    Murat Uzam1, Bernard Berthomieu2, Wei Wei3,*, Yufeng Chen3, Mohammed El-Meligy4,5, Mohamed Abdel Fattah Sharaf 6

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-30, 2026, DOI:10.32604/cmc.2025.069502 - 10 November 2025

    Abstract A novel siphon-based divide-and-conquer (SbDaC) policy is presented in this paper for the synthesis of Petri net (PN) based liveness-enforcing supervisors (LES) for flexible manufacturing systems (FMS) prone to deadlocks or livelocks. The proposed method takes an uncontrolled and bounded PN model (UPNM) of the FMS. Firstly, the reduced PNM (RPNM) is obtained from the UPNM by using PN reduction rules to reduce the computation burden. Then, the set of strict minimal siphons (SMSs) of the RPNM is computed. Next, the complementary set of SMSs is computed from the set of SMSs. By the union… More >

  • Open Access

    ARTICLE

    Intelligent Semantic Segmentation with Vision Transformers for Aerial Vehicle Monitoring

    Moneerah Alotaibi*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069195 - 10 November 2025

    Abstract Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods, which often demand extensive computational resources and struggle with diverse data acquisition techniques. This research presents a novel approach for vehicle classification and recognition in aerial image sequences, integrating multiple advanced techniques to enhance detection accuracy. The proposed model begins with preprocessing using Multiscale Retinex (MSR) to enhance image quality, followed by Expectation-Maximization (EM) Segmentation for precise foreground object identification. Vehicle detection is performed using the state-of-the-art YOLOv10 framework, while feature extraction incorporates Maximally Stable Extremal… More >

  • Open Access

    ARTICLE

    DRL-Based Cross-Regional Computation Offloading Algorithm

    Lincong Zhang1, Yuqing Liu1, Kefeng Wei2, Weinan Zhao1, Bo Qian1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069108 - 10 November 2025

    Abstract In the field of edge computing, achieving low-latency computational task offloading with limited resources is a critical research challenge, particularly in resource-constrained and latency-sensitive vehicular network environments where rapid response is mandatory for safety-critical applications. In scenarios where edge servers are sparsely deployed, the lack of coordination and information sharing often leads to load imbalance, thereby increasing system latency. Furthermore, in regions without edge server coverage, tasks must be processed locally, which further exacerbates latency issues. To address these challenges, we propose a novel and efficient Deep Reinforcement Learning (DRL)-based approach aimed at minimizing average… More >

  • Open Access

    ARTICLE

    Towards Decentralized IoT Security: Optimized Detection of Zero-Day Multi-Class Cyber-Attacks Using Deep Federated Learning

    Misbah Anwer1,*, Ghufran Ahmed1, Maha Abdelhaq2, Raed Alsaqour3, Shahid Hussain4, Adnan Akhunzada5,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.068673 - 10 November 2025

    Abstract The exponential growth of the Internet of Things (IoT) has introduced significant security challenges, with zero-day attacks emerging as one of the most critical and challenging threats. Traditional Machine Learning (ML) and Deep Learning (DL) techniques have demonstrated promising early detection capabilities. However, their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints, high computational costs, and the costly time-intensive process of data labeling. To address these challenges, this study proposes a Federated Learning (FL) framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in… More >

  • Open Access

    ARTICLE

    GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT

    Wanwei Huang1,*, Huicong Yu1, Jiawei Ren2, Kun Wang3, Yanbu Guo1, Lifeng Jin4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.068493 - 10 November 2025

    Abstract Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity. These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy. This paper proposes an industrial Internet of Things intrusion detection feature selection algorithm based on an improved whale optimization algorithm (GSLDWOA). The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to, such as local optimality, long detection time, and reduced accuracy. First, the initial population’s diversity is increased using the Gaussian Mutation More >

Displaying 1-10 on page 1 of 3115. Per Page