Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,637)
  • Open Access

    ARTICLE

    Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems

    Sabrina Meddah1,2,*, Sid Ahmed Tadjer3, Abdelhakim Idir4, Kong Fah Tee5,6,*, Mohamed Zinelabidine Doghmane1, Madjid Kidouche1

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 77-103, 2025, DOI:10.32604/sdhm.2024.053541 - 15 November 2024

    Abstract Maintaining the integrity and longevity of structures is essential in many industries, such as aerospace, nuclear, and petroleum. To achieve the cost-effectiveness of large-scale systems in petroleum drilling, a strong emphasis on structural durability and monitoring is required. This study focuses on the mechanical vibrations that occur in rotary drilling systems, which have a substantial impact on the structural integrity of drilling equipment. The study specifically investigates axial, torsional, and lateral vibrations, which might lead to negative consequences such as bit-bounce, chaotic whirling, and high-frequency stick-slip. These events not only hinder the efficiency of drilling… More >

  • Open Access

    PROCEEDINGS

    Optimized Design Study of Subsea Hydrothermal Closed-Loop Heat Collection System Based on Numerical Simulation

    Gaowei Yi1, Da Zhang1,2, Xinyu Liu1, Yan Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-3, 2024, DOI:10.32604/icces.2024.011165

    Abstract 1 Introduction
    With dwindling terrestrial energy resources, there's a societal consensus to harness clean, renewable energy. Submarine hydrothermal vents, hosting abundant and unexplored energy potentials, draw international academic scrutiny [1]. Yet, comprehensive research on exploiting their thermal energy systems remains sparse. Existing technologies persist with stability and efficiency challenges. While promising ventures in hydrothermal power generation exist, they grapple with heat loss, instability, limited capacity, and heightened damage susceptibility [2]. This study scrutinizes submarine hydrothermal vents, amalgamating terrestrial closed-loop geothermal technology to resolve challenges and enable efficient energy utilization [3]. Given the complex geology of these… More >

  • Open Access

    ARTICLE

    Perspectives and Challenges of Family Members in Providing Mental Support to Cancer Patients: A Qualitative Study in Beijing, China

    Wei Wang1,2, Lan Li3,*

    Psycho-Oncologie, Vol.18, No.4, pp. 257-269, 2024, DOI:10.32604/po.2024.057004 - 04 December 2024

    Abstract This study explores the perspectives and challenges faced by family members providing mental support to cancer patients in Beijing, China. The primary objective is to understand the emotional and practical roles family members undertake and the difficulties they encounter. Utilizing a qualitative research design, data were collected through semi-structured interviews with family caregivers of cancer patients. Thematic analysis revealed several key themes: the dual burden of emotional support and caregiving responsibilities, the impact on daily life and personal well-being, the role and effectiveness of external support systems, perceptions of medical staff support, and the common More >

  • Open Access

    PROCEEDINGS

    Theoretical Modeling for Water Permeation Across Multilayer Films of Bioelectronic Systems

    Rui Li1,*, Yonggang Huang2, John A. Rogers2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.012578

    Abstract Bioresorbable electronic devices represent an emerging class of technology that involves components which physically disappear, in whole or in part, at prescribed rates and at programmed times [1,2]. Obtaining reliable performance and favorable degradation behavior demands materials that can serve as biofluid barriers in encapsulating structures that avoid premature degradation of active electronic components [3–5]. We have recently presented a multilayer organic–inorganic film design that addresses this need, with properties in water impermeability, mechanical flexibility, and processability that are superior to alternatives [6,7]. Theoretical modeling for water permeation across the multilayer films provides an important More >

  • Open Access

    ARTICLE

    Encapsulation of Clove Oil Nanoemlusion in Chitosan-Based Nano-Composite: In Vitro and in Vivo Antifungal Activity against Rhizoctonia solani and Sclerotium rolfsii

    Ahmed Mahmoud Ismail1,2,3,*, Eman Said Elshewy3, Isra H. Ali4,5, Naglaa Abd Elbaki Sallam Muhanna3, Eman Yehia Khafagi3

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 2787-2811, 2024, DOI:10.32604/phyton.2024.057518 - 30 November 2024

    Abstract Rhizoctonia solani Kühn and Sclerotium rolfsii Sacc. are the primary soil-borne plant diseases responsible for significant reductions in global crop yields. The primary goal of this study was to investigate the antifungal potentials of clove essential oil (CEO), nanoemulsion form (CEONE) and chitosan/nanoemulsion nanocomposite (CS/CEONE) against R. solani and S. rolfsii through in vitro and in vivo trials. Both CEONE and CS/CEONE were prepared and investigated for their physical chemical and morphological characterization. The poisoned medium method was utilized to evaluate the inhibitory effects of CEO, CEONE and CS/CEONE on the mycelial growth and enzymatic activity of R. solani and S. rolfsii. The… More >

  • Open Access

    ARTICLE

    Systematic Identification of Acer rubrum bZIP Transcription Factors and Their Potential Role in Anthocyanin Accumulation under Low Temperature with Light

    Yue Zhao1,2,#, Shah Faheem Afzal2,#, Zhu Chen2, Khan Arif Kamal1,2, Yuzhi Fei2, Xin Meng1,2, Jie Ren2,*, Hua Liu1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 3109-3130, 2024, DOI:10.32604/phyton.2024.056548 - 30 November 2024

    Abstract Acer rubrum is an important garden color-leafed plant. Its leaves will turn red in autumn, which is of great ornamental value. The leaf color change in Acer rubrum is closely associated with anthocyanins accumulation. In anthocyanin synthesis and accumulation, various transcription factor families play significant regulatory roles, including the basic (region) leucine zipper (bZIP). However, there is no report on the systematic identification and functional analysis of the bZIPs in Acer rubrum. In this study, 137 bZIPs distributed on 29 chromosomes of Acer rubrum were identified and renamed according to their locations on the chromosomes. According to the constructed… More >

  • Open Access

    ARTICLE

    Malfunction Diagnosis of the GTCC System under All Operating Conditions Based on Exergy Analysis

    Xinwei Wang1,2,*, Ming Li1, Hankun Bing1, Dongxing Zhang1, Yuanshu Zhang1

    Energy Engineering, Vol.121, No.12, pp. 3875-3898, 2024, DOI:10.32604/ee.2024.056237 - 22 November 2024

    Abstract After long-term operation, the performance of components in the GTCC system deteriorates and requires timely maintenance. Due to the inability to directly measure the degree of component malfunction, it is necessary to use advanced exergy analysis diagnosis methods to characterize the components’ health condition (degree of malfunction) through operation data of the GTCC system. The dissipative temperature is used to describe the degree of malfunction of different components in the GTCC system, and an advanced exergy analysis diagnostic method is used to establish a database of overall operating condition component malfunctions in the GTCC system.… More >

  • Open Access

    ARTICLE

    Thermodynamic, Economic, and Environmental Analyses and Multi-Objective Optimization of Dual-Pressure Organic Rankine Cycle System with Dual-Stage Ejector

    Guowei Li1,*, Shujuan Bu2, Xinle Yang2, Kaijie Liang1, Zhengri Shao1, Xiaobei Song1, Yitian Tang3, Dejing Zong4

    Energy Engineering, Vol.121, No.12, pp. 3843-3874, 2024, DOI:10.32604/ee.2024.056195 - 22 November 2024

    Abstract A novel dual-pressure organic Rankine cycle system (DPORC) with a dual-stage ejector (DE-DPORC) is proposed. The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the high-pressure expander to pressurize a large quantity of exhaust gas to perform work for the low-pressure expander. This innovative approach addresses condensing pressure limitations, reduces power consumption during pressurization, minimizes heat loss, and enhances the utilization efficiency of waste heat steam. A thermodynamic model is developed with net output work, thermal efficiency, and exergy efficiency (Wnet, ηt, ηex) as evaluation criteria, an economic model is established… More >

  • Open Access

    ARTICLE

    Rapid Parameter-Optimizing Strategy for Plug-and-Play Devices in DC Distribution Systems under the Background of Digital Transformation

    Zhi Li1, Yufei Zhao2, Yueming Ji2, Hanwen Gu2, Zaibin Jiao2,*

    Energy Engineering, Vol.121, No.12, pp. 3899-3927, 2024, DOI:10.32604/ee.2024.055899 - 22 November 2024

    Abstract By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement, information communication, and other fields, the digital DC distribution network can efficiently and reliably access Distributed Generator (DG) and Energy Storage Systems (ESS), exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play (PnP) operations. However, during device plug-in and -out processes, improper system parameters may lead to small-signal stability issues. Therefore, before executing PnP operations, conducting stability analysis and adjusting parameters swiftly is crucial. This study introduces a four-stage strategy for parameter optimization to enhance… More >

  • Open Access

    ARTICLE

    Modeling, Simulation, and Risk Analysis of Battery Energy Storage Systems in New Energy Grid Integration Scenarios

    Xiaohui Ye1,*, Fucheng Tan1, Xinli Song2, Hanyang Dai2, Xia Li2, Shixia Mu2, Shaohang Hao2

    Energy Engineering, Vol.121, No.12, pp. 3689-3710, 2024, DOI:10.32604/ee.2024.055200 - 22 November 2024

    Abstract Energy storage batteries can smooth the volatility of renewable energy sources. The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy storage system (BESS). However, the current modeling of grid-connected BESS is overly simplistic, typically only considering state of charge (SOC) and power constraints. Detailed lithium (Li)-ion battery cell models are computationally intensive and impractical for real-time applications and may not be suitable for power grid operating conditions. Additionally, there is a lack of real-time batteries risk assessment frameworks. To address these issues, in this… More >

Displaying 1-10 on page 1 of 2637. Per Page