Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,249)
  • Open Access

    ARTICLE

    An Intelligent Multi-Stage GA–SVM Hybrid Optimization Framework for Feature Engineering and Intrusion Detection in Internet of Things Networks

    Isam Bahaa Aldallal1, Abdullahi Abdu Ibrahim1,*, Saadaldeen Rashid Ahmed2,3

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075212 - 10 February 2026

    Abstract The rapid growth of IoT networks necessitates efficient Intrusion Detection Systems (IDS) capable of addressing dynamic security threats under constrained resource environments. This paper proposes a hybrid IDS for IoT networks, integrating Support Vector Machine (SVM) and Genetic Algorithm (GA) for feature selection and parameter optimization. The GA reduces the feature set from 41 to 7, achieving a 30% reduction in overhead while maintaining an attack detection rate of 98.79%. Evaluated on the NSL-KDD dataset, the system demonstrates an accuracy of 97.36%, a recall of 98.42%, and an F1-score of 96.67%, with a low false More >

  • Open Access

    ARTICLE

    Actor–Critic Trajectory Controller with Optimal Design for Nonlinear Robotic Systems

    Nien-Tsu Hu1,*, Hsiang-Tung Kao1, Chin-Sheng Chen1, Shih-Hao Chang2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074993 - 10 February 2026

    Abstract Trajectory tracking for nonlinear robotic systems remains a fundamental yet challenging problem in control engineering, particularly when both precision and efficiency must be ensured. Conventional control methods are often effective for stabilization but may not directly optimize long-term performance. To address this limitation, this study develops an integrated framework that combines optimal control principles with reinforcement learning for a single-link robotic manipulator. The proposed scheme adopts an actor–critic structure, where the critic network approximates the value function associated with the Hamilton–Jacobi–Bellman equation, and the actor network generates near-optimal control signals in real time. This dual… More >

  • Open Access

    ARTICLE

    Multilevel Military Image Encryption Based on Tri-Independent Keying Approach

    Shereen S. Jumaa1, Mohsin H. Challoob2, Amjad J. Humaidi2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074752 - 10 February 2026

    Abstract Military image encryption plays a vital role in ensuring the secure transmission of sensitive visual information from unauthorized access. This paper proposes a new Tri-independent keying method for encrypting military images. The proposed encryption method is based on multilevel security stages of pixel-level scrambling, bit-level manipulation, and block-level shuffling operations. For having a vast key space, the input password is hashed by the Secure Hash Algorithm 256-bit (SHA-256) for generating independently deterministic keys used in the multilevel stages. A piecewise pixel-level scrambling function is introduced to perform a dual flipping process controlled with an adaptive… More >

  • Open Access

    ARTICLE

    Design of a Patrol and Security Robot with Semantic Mapping and Obstacle Avoidance System Using RGB-D Camera and LiDAR

    Shu-Yin Chiang*, Shin-En Huang

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074528 - 10 February 2026

    Abstract This paper presents an intelligent patrol and security robot integrating 2D LiDAR and RGB-D vision sensors to achieve semantic simultaneous localization and mapping (SLAM), real-time object recognition, and dynamic obstacle avoidance. The system employs the YOLOv7 deep-learning framework for semantic detection and SLAM for localization and mapping, fusing geometric and visual data to build a high-fidelity 2D semantic map. This map enables the robot to identify and project object information for improved situational awareness. Experimental results show that object recognition reached 95.4% mAP@0.5. Semantic completeness increased from 68.7% (single view) to 94.1% (multi-view) with an More >

  • Open Access

    ARTICLE

    Detecting and Mitigating Cyberattacks on Load Frequency Control with Battery Energy Storage System

    Yunhao Yu1, Fuhua Luo1, Zhenyong Zhang2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074277 - 10 February 2026

    Abstract This paper investigates the detection and mitigation of coordinated cyberattacks on Load Frequency Control (LFC) systems integrated with Battery Energy Storage Systems (BESS). As renewable energy sources gain greater penetration, power grids are becoming increasingly vulnerable to cyber threats, potentially leading to frequency instability and widespread disruptions. We model two significant attack vectors: load-altering attacks (LAAs) and false data injection attacks (FDIAs) that corrupt frequency measurements. These are analyzed for their impact on grid frequency stability in both linear and nonlinear LFC models, incorporating generation rate constraints and nonlinear loads. A coordinated attack strategy is… More >

  • Open Access

    ARTICLE

    Big Data-Driven Federated Learning Model for Scalable and Privacy-Preserving Cyber Threat Detection in IoT-Enabled Healthcare Systems

    Noura Mohammed Alaskar1, Muzammil Hussain2, Saif Jasim Almheiri1, Atta-ur-Rahman3, Adnan Khan4,5,6, Khan M. Adnan7,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074041 - 10 February 2026

    Abstract The increasing number of interconnected devices and the incorporation of smart technology into contemporary healthcare systems have significantly raised the attack surface of cyber threats. The early detection of threats is both necessary and complex, yet these interconnected healthcare settings generate enormous amounts of heterogeneous data. Traditional Intrusion Detection Systems (IDS), which are generally centralized and machine learning-based, often fail to address the rapidly changing nature of cyberattacks and are challenged by ethical concerns related to patient data privacy. Moreover, traditional AI-driven IDS usually face challenges in handling large-scale, heterogeneous healthcare data while ensuring data… More >

  • Open Access

    ARTICLE

    A Distributed Anonymous Reputation System for V2X Communication

    Shahidatul Sadiah1,#, Toru Nakanishi2,#,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073774 - 10 February 2026

    Abstract V2X communication enables vehicles to share real-time traffic and road-condition data, but binding messages to persistent identifiers enables location tracking. Furthermore, since forged reports from malicious vehicles can distort trust decisions and threaten road safety, privacy-preserving trust management is essential. Lu et al. previously presented BARS, an anonymous reputation mechanism founded on blockchain technology to establish a privacy-preserving trust architecture for V2X communication. In this system, reputation certificates without a vehicle identifier ensure anonymity, while two authorities jointly manage certificate issuance and reputation updates. However, the centralized certificate updates introduce scalability limitations, and the authorities… More >

  • Open Access

    REVIEW

    A State-of-the-Art Survey of Adversarial Reinforcement Learning for IoT Intrusion Detection

    Qasem Abu Al-Haija1,*, Shahad Al Tamimi2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073540 - 10 February 2026

    Abstract Adversarial Reinforcement Learning (ARL) models for intelligent devices and Network Intrusion Detection Systems (NIDS) improve system resilience against sophisticated cyber-attacks. As a core component of ARL, Adversarial Training (AT) enables NIDS agents to discover and prevent new attack paths by exposing them to competing examples, thereby increasing detection accuracy, reducing False Positives (FPs), and enhancing network security. To develop robust decision-making capabilities for real-world network disruptions and hostile activity, NIDS agents are trained in adversarial scenarios to monitor the current state and notify management of any abnormal or malicious activity. The accuracy and timeliness of… More >

  • Open Access

    ARTICLE

    Robust Recommendation Adversarial Training Based on Self-Purification Data Sanitization

    Haiyan Long1, Gang Chen2,*, Hai Chen3,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073243 - 10 February 2026

    Abstract The performance of deep recommendation models degrades significantly under data poisoning attacks. While adversarial training methods such as Vulnerability-Aware Training (VAT) enhance robustness by injecting perturbations into embeddings, they remain limited by coarse-grained noise and a static defense strategy, leaving models susceptible to adaptive attacks. This study proposes a novel framework, Self-Purification Data Sanitization (SPD), which integrates vulnerability-aware adversarial training with dynamic label correction. Specifically, SPD first identifies high-risk users through a fragility scoring mechanism, then applies self-purification by replacing suspicious interactions with model-predicted high-confidence labels during training. This closed-loop process continuously sanitizes the training More >

  • Open Access

    ARTICLE

    Advancing Android Ransomware Detection with Hybrid AutoML and Ensemble Learning Approaches

    Kirubavathi Ganapathiyappan1, Chahana Ravikumar1, Raghul Alagunachimuthu Ranganayaki1, Ayman Altameem2, Ateeq Ur Rehman3,*, Ahmad Almogren4,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072840 - 10 February 2026

    Abstract Android smartphones have become an integral part of our daily lives, becoming targets for ransomware attacks. Such attacks encrypt user information and ask for payment to recover it. Conventional detection mechanisms, such as signature-based and heuristic techniques, often fail to detect new and polymorphic ransomware samples. To address this challenge, we employed various ensemble classifiers, such as Random Forest, Gradient Boosting, Bagging, and AutoML models. We aimed to showcase how AutoML can automate processes such as model selection, feature engineering, and hyperparameter optimization, to minimize manual effort while ensuring or enhancing performance compared to traditional… More >

Displaying 1-10 on page 1 of 3249. Per Page