Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,193)
  • Open Access

    ARTICLE

    Hybrid Runtime Detection of Malicious Containers Using eBPF

    Jeongeun Ryu1, Riyeong Kim2, Soomin Lee1, Sumin Kim1, Hyunwoo Choi1,2, Seongmin Kim1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.074871 - 12 January 2026

    Abstract As containerized environments become increasingly prevalent in cloud-native infrastructures, the need for effective monitoring and detection of malicious behaviors has become critical. Malicious containers pose significant risks by exploiting shared host resources, enabling privilege escalation, or launching large-scale attacks such as cryptomining and botnet activities. Therefore, developing accurate and efficient detection mechanisms is essential for ensuring the security and stability of containerized systems. To this end, we propose a hybrid detection framework that leverages the extended Berkeley Packet Filter (eBPF) to monitor container activities directly within the Linux kernel. The framework simultaneously collects flow-based network… More >

  • Open Access

    REVIEW

    Intrusion Detection Systems in Industrial Control Systems: Landscape, Challenges and Opportunities

    Tong Wu, Dawei Zhou, Qingyu Ou*, Fang Luo

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073482 - 12 January 2026

    Abstract The increasing interconnection of modern industrial control systems (ICSs) with the Internet has enhanced operational efficiency, but also made these systems more vulnerable to cyberattacks. This heightened exposure has driven a growing need for robust ICS security measures. Among the key defences, intrusion detection technology is critical in identifying threats to ICS networks. This paper provides an overview of the distinctive characteristics of ICS network security, highlighting standard attack methods. It then examines various intrusion detection methods, including those based on misuse detection, anomaly detection, machine learning, and specialised requirements. This paper concludes by exploring More >

  • Open Access

    ARTICLE

    LUAR: Lightweight and Universal Attribute Revocation Mechanism with SGX Assistance towards Applicable ABE Systems

    Fei Tang1,*, Ping Wang1, Jiang Yu1, Huihui Zhu1, Mengxue Qin1, Ling Yang2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073423 - 12 January 2026

    Abstract Attribute-Based Encryption (ABE) has emerged as a fundamental access control mechanism in data sharing, enabling data owners to define flexible access policies. A critical aspect of ABE is key revocation, which plays a pivotal role in maintaining security. However, existing key revocation mechanisms face two major challenges: (1) High overhead due to ciphertext and key updates, primarily stemming from the reliance on revocation lists during attribute revocation, which increases computation and communication costs. (2) Limited universality, as many attribute revocation mechanisms are tailored to specific ABE constructions, restricting their broader applicability. To address these challenges,… More >

  • Open Access

    ARTICLE

    Energy Aware Task Scheduling of IoT Application Using a Hybrid Metaheuristic Algorithm in Cloud Computing

    Ahmed Awad Mohamed1, Eslam Abdelhakim Seyam2,*, Ahmed R. Elsaeed3, Laith Abualigah4, Aseel Smerat5,6, Ahmed M. AbdelMouty7, Hosam E. Refaat8

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073171 - 12 January 2026

    Abstract In recent years, fog computing has become an important environment for dealing with the Internet of Things. Fog computing was developed to handle large-scale big data by scheduling tasks via cloud computing. Task scheduling is crucial for efficiently handling IoT user requests, thereby improving system performance, cost, and energy consumption across nodes in cloud computing. With the large amount of data and user requests, achieving the optimal solution to the task scheduling problem is challenging, particularly in terms of cost and energy efficiency. In this paper, we develop novel strategies to save energy consumption across… More >

  • Open Access

    ARTICLE

    A Real Time YOLO Based Container Grapple Slot Detection and Classification System

    Chen-Chiung Hsieh1,*, Chun-An Chen1, Wei-Hsin Huang2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072514 - 12 January 2026

    Abstract Container transportation is pivotal in global trade due to its efficiency, safety, and cost-effectiveness. However, structural defects—particularly in grapple slots—can result in cargo damage, financial loss, and elevated safety risks, including container drops during lifting operations. Timely and accurate inspection before and after transit is therefore essential. Traditional inspection methods rely heavily on manual observation of internal and external surfaces, which are time-consuming, resource-intensive, and prone to subjective errors. Container roofs pose additional challenges due to limited visibility, while grapple slots are especially vulnerable to wear from frequent use. This study proposes a two-stage automated… More >

  • Open Access

    ARTICLE

    Atomistic Insights into Aluminium–Boron Nitride Nanolayered Interconnects for High-Performance VLSI Systems

    Mallikarjun P. Y.1, Rame Gowda D. N.1, Trisha J. K.1, Varshini M.1, Poornesha S. Shetty1, Mandar Jatkar1,*, Arpan Shah2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072507 - 12 January 2026

    Abstract As circuit feature sizes approach the nanoscale, traditional Copper (Cu) interconnects face significant hurdles posed by rising resistance-capacitance (RC) delay, electromigration, and high power dissipation. These limitations impose constraints on the scalability and reliability of future semiconductor technologies. Our paper describes the new Vertical multilayer Aluminium Boron Nitride Nanoribbon (AlBN) interconnect structure, integrated with Density functional theory (DFT) using first-principles calculations. This study explores AlBN-based nanostructures with doping of 1Cu, 2Cu, 1Fe (Iron), and 2Fe for the application of Very Large Scale Integration (VLSI) interconnects. The AlBN structure utilized the advantages of vertical multilayer interconnects… More >

  • Open Access

    ARTICLE

    A Novel Signature-Based Secure Intrusion Detection for Smart Transportation Systems

    Hanaa Nafea1, Awais Qasim2, Sana Abdul Sattar2, Adeel Munawar3, Muhammad Nadeem Ali4, Byung-Seo Kim4,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072281 - 12 January 2026

    Abstract The increased connectivity and reliance on digital technologies have exposed smart transportation systems to various cyber threats, making intrusion detection a critical aspect of ensuring their secure operation. Traditional intrusion detection systems have limitations in terms of centralized architecture, lack of transparency, and vulnerability to single points of failure. This is where the integration of blockchain technology with signature-based intrusion detection can provide a robust and decentralized solution for securing smart transportation systems. This study tackles the issue of database manipulation attacks in smart transportation networks by proposing a signature-based intrusion detection system. The introduced More >

  • Open Access

    ARTICLE

    CIT-Rec: Enhancing Sequential Recommendation System with Large Language Models

    Ziyu Li1, Zhen Chen2, Xuejing Fu2, Tong Mo1,*, Weiping Li1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071994 - 12 January 2026

    Abstract Recommendation systems are key to boosting user engagement, satisfaction, and retention, particularly on media platforms where personalized content is vital. Sequential recommendation systems learn from user-item interactions to predict future items of interest. However, many current methods rely on unique user and item IDs, limiting their ability to represent users and items effectively, especially in zero-shot learning scenarios where training data is scarce. With the rapid development of Large Language Models (LLMs), researchers are exploring their potential to enhance recommendation systems. However, there is a semantic gap between the linguistic semantics of LLMs and the… More >

  • Open Access

    ARTICLE

    DRL-Based Task Scheduling and Trajectory Control for UAV-Assisted MEC Systems

    Sai Xu1,*, Jun Liu1,*, Shengyu Huang1, Zhi Li2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071865 - 12 January 2026

    Abstract In scenarios where ground-based cloud computing infrastructure is unavailable, unmanned aerial vehicles (UAVs) act as mobile edge computing (MEC) servers to provide on-demand computation services for ground terminals. To address the challenge of jointly optimizing task scheduling and UAV trajectory under limited resources and high mobility of UAVs, this paper presents PER-MATD3, a multi-agent deep reinforcement learning algorithm with prioritized experience replay (PER) into the Centralized Training with Decentralized Execution (CTDE) framework. Specifically, PER-MATD3 enables each agent to learn a decentralized policy using only local observations during execution, while leveraging a shared replay buffer with More >

  • Open Access

    ARTICLE

    Traffic Vision: UAV-Based Vehicle Detection and Traffic Pattern Analysis via Deep Learning Classifier

    Mohammed Alnusayri1, Ghulam Mujtaba2, Nouf Abdullah Almujally3, Shuoa S. Aitarbi4, Asaad Algarni5, Ahmad Jalal2,6, Jeongmin Park7,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071804 - 12 January 2026

    Abstract This paper presents a unified Unmanned Aerial Vehicle-based (UAV-based) traffic monitoring framework that integrates vehicle detection, tracking, counting, motion prediction, and classification in a modular and co-optimized pipeline. Unlike prior works that address these tasks in isolation, our approach combines You Only Look Once (YOLO) v10 detection, ByteTrack tracking, optical-flow density estimation, Long Short-Term Memory-based (LSTM-based) trajectory forecasting, and hybrid Speeded-Up Robust Feature (SURF) + Gray-Level Co-occurrence Matrix (GLCM) feature engineering with VGG16 classification. Upon the validation across datasets (UAVDT and UAVID) our framework achieved a detection accuracy of 94.2%, and 92.3% detection accuracy when More >

Displaying 1-10 on page 1 of 3193. Per Page