Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (814)
  • Open Access

    ARTICLE

    Structural Arrangement Effects of Mineral Platelets on the Nature of Stress Distribution in Bio-Composites

    S. Anup1, S. M. Sivakumar2, G. K. Suraishkumar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.2, pp. 145-154, 2007, DOI:10.3970/cmes.2007.018.145

    Abstract Bone is a hierarchical bio-composite, and has a staggered arrangement of soft protein molecules interspaced with hard mineral platelets at the fine ultrastructure level. The investigation into reasons for high fracture toughness of bio-composites such as bone requires consideration of properties at the different levels of hierarchy. In this work, the analysis is done at the continuum level, but the properties used are appropriate to that of the level considered. In this way, the properties at the fine ultrastructure level of bone is considered in the stress distribution analysis of a platelet adjacent to the broken platelet. Results show the… More >

  • Open Access

    ARTICLE

    A General Partial Discretization Methodology for Interlaminar Stress Computation in Composite Laminates

    Tarun Kant1, Sandeep S. Pendhari2, Yogesh M. Desai3

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.2, pp. 135-162, 2007, DOI:10.3970/cmes.2007.017.135

    Abstract A two-point boundary value problem (BVP) is formed in the present work governed by a set of first-order coupled ordinary differential equations (ODEs) in terms of displacements and the transverse stresses through the thickness of laminate (in domain -h/2 < z < h/2) by introducing partial discretization methodology only in the plan area of the three dimensional (3D) laminate. The primary dependent variables in the ODEs are those which occur naturally on a plane z=a constant. An effective numerical integration (NI) technique is utilized for tackling the two-point BVP in an efficient manner. Numerical studies on cross-ply and angle-ply composite… More >

  • Open Access

    ARTICLE

    Five Different Formulations of the Finite Strain Perfectly Plastic Equations

    Chein-Shan Liu 1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.2, pp. 73-94, 2007, DOI:10.3970/cmes.2007.017.073

    Abstract The primary objectives of the present exposition focus on five different types of representations of the plastic equations obtained from an elastic-perfectly plastic model by employing different corotational stress rates. They are (a) an affine nonlinear system with a finite-dimensional Lie algebra, (b) a canonical linear system in the Minkowski space, (c) a non-canonical linear system in the Minkowski space, (d) the Lie-Poisson bracket formulation, and (e) a two-generator and two-bracket formulation. For the affine nonlinear system we prove that the Lie algebra of the vector fields is so(5,1), which has dimensions fifteen, and by the Lie theory the superposition… More >

  • Open Access

    ARTICLE

    A Virtual Crack Closure-Integral Method (VCCM) for Three-Dimensional Crack Problems Using Linear Tetrahedral Finite Elements

    H. Okada 1, T. Kamibeppu 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.3, pp. 229-238, 2005, DOI:10.3970/cmes.2005.010.229

    Abstract In this paper, a three-dimensional VCCM (Virtual Crack Closure-Integral Method) for evaluating the energy release rate and the stress intensity factor is presented. Many engineers and researchers believe that hexahedral finite elements should be used to perform three-dimensional fracture analyses. Previous VCCM formulations assume the use of hexahedral finite elements. In present study, the authors have been developing a VCCM that works with tetrahedral finite elements. In the field of large-scale computation, the use of tetrahedral finite elements has becoming very popular as high performance mesh generation programs became available. Therefore, building a large and complex analysis model with hexahedral… More >

  • Open Access

    ARTICLE

    BIE Method for 3D Problems of Rigid Disk-Inclusion and Crack Interaction in Elastic Matrix

    V.V. Mykhas’kiv1, O.I. Stepanyuk2

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.1, pp. 45-64, 2005, DOI:10.3970/cmes.2005.010.045

    Abstract The 3D elastostatic problem for an infinite remotely loaded matrix containing a finite number of arbitrarily located rigid disk-inclusions and plane cracks is solved by the boundary integral equation (BIE) method. Its boundary integral formulation is achieved by the superposition principle with the subsequent integral representations of superposition terms through surface integrals, which should satisfy the displacement linearity conditions in the inclusion domains and load-free conditions in the crack domains. The subtraction technique in the conjunction with mapping technique under taking into account the structure of the solution at the edges of inhomogeneities is applied for the regularization of BIE… More >

  • Open Access

    ARTICLE

    Calculation of J-Integral and Stress Intensity Factors using the Material Point Method

    Y. Guo1, J. A. Nairn1

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.3, pp. 295-308, 2004, DOI:10.3970/cmes.2004.006.295

    Abstract The Material Point Method (MPM), which is a particle-based, meshless method that discretizes material bodies into a collection of material points (the particles), is a new method for numerical analysis of dynamic solid mechanics problems. Recently, MPM has been generalized to include dynamic stress analysis of structures with explicit cracks. This paper considers evaluation of crack-tip parameters, such as J-integral and stress intensity factors, from MPM calculations involving explicit cracks. Examples for both static and dynamic problems for pure modes I and II or mixed mode loading show that MPM works well for calculation of fracture parameters. The MPM results… More >

  • Open Access

    ARTICLE

    3-D Transient Dynamic Crack Analysis by a Novel Time-Domain BEM

    Ch. Zhang2, A. Savaidis3

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.5, pp. 603-618, 2003, DOI:10.3970/cmes.2003.004.603

    Abstract A novel non-hypersingular time-domain traction BEM is presented for three-dimensional (3-D) transient elastodynamic crack analysis. The initial-boundary value problem is formulated as a set of non-hypersingular time-domain traction boundary integral equations (BIEs). To solve the time-domain traction BIEs, a time-stepping scheme based on the convolution quadrature formula of Lubich (1988a,b; 1994) for temporal discretization and a collocation method for spatial discretization is adopted. Numerical examples are given for an unbounded solid with a penny-shaped crack under a tensile and shear impact loading. A comparison of the present time-domain BEM with the conventional one shows that the novel time-domain method is… More >

  • Open Access

    ARTICLE

    A Hybrid Experimental-Numerical Study on the Mechanism of Three-Dimensional Dynamic Fracture

    T. Nishioka1, F. Stan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.1, pp. 119-140, 2003, DOI:10.3970/cmes.2003.004.119

    Abstract In this paper we investigate the essentially unexplored area of three-dimensional dynamic fracture mechanics. The general objective sought by this investigation is the understanding of three-dimensional dynamic crack propagation and arrest, and, specifically, the effect that the specimen thickness has on the dynamic fracture mechanism. In particular, in the context of the present paper, it is intended to provide a summary of the achievements on the issue of three-dimensional dynamic fracture parameters. Furthermore, the behavior of the three-dimensional field near the crack front is investigated. The issue that will be addressed is the extent of regions over which plane stress… More >

  • Open Access

    ARTICLE

    Boundary Element Analysis of Curved Cracked Panels with Mechanically Fastened Repair Patches

    P. H. Wen1, M. H. Aliabadi1, A. Young2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.1, pp. 1-10, 2002, DOI:10.3970/cmes.2002.003.001

    Abstract In this paper, applications of the boundary element method to damaged and undamaged aircraft curved panels with mechanical repairs are presented. The effects of fastened repairs are replaced by uniform distribution forces in the area of cross-section of the rivet and can be determined from the compatibility condition of displacements. A coupled boundary integral formulation of a shear deformable plate and two dimensional plane stress elasticity is used to determine the bending and membrane forces on the rivets. Domain integrals in each integral equation are determined using the dual reciprocity method. The stress intensity factors due to bending and membrane… More >

  • Open Access

    ARTICLE

    An Improved Contact Algorithm for the Material Point Method and Application to Stress Propagation in Granular Material

    S.G. Bardenhagen1, J.E. Guilkey2, K.M. Roessig3, J.U. Brackbill4, W.M. Witzel5, J.C.Foster6

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.4, pp. 509-522, 2001, DOI:10.3970/cmes.2001.002.509

    Abstract Contact between deformable bodies is a difficult problem in the analysis of engineering systems. A new approach to contact has been implemented using the Material Point Method for solid mechanics, Bardenhagen, Brackbill, and Sulsky (2000a). Here two improvements to the algorithm are described. The first is to include the normal traction in the contact logic to more appropriately determine the free separation criterion. The second is to provide numerical stability by scaling the contact impulse when computational grid information is suspect, a condition which can be expected to occur occasionally as material bodies move through the computational grid. The modifications… More >

Displaying 731-740 on page 74 of 814. Per Page