Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (48)
  • Open Access

    ARTICLE

    Cross-Diffusion Effects on an MHD Williamson Nanofluid Flow Past a Nonlinear Stretching Sheet Immersed in a Permeable Medium

    R. Madan Kumar1, R. Srinivasa Raju2, F. Mebarek-Oudina3,*, M. Anil Kumar4, V. K. Narla2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 15-34, 2024, DOI:10.32604/fhmt.2024.048045

    Abstract The primary aim of this research endeavor is to examine the characteristics of magnetohydrodynamic Williamson nanofluid flow past a nonlinear stretching surface that is immersed in a permeable medium. In the current analysis, the impacts of Soret and Dufour (cross-diffusion effects) have been attentively taken into consideration. Using appropriate similarity variable transformations, the governing nonlinear partial differential equations were altered into nonlinear ordinary differential equations and then solved numerically using the Runge Kutta Fehlberg-45 method along with the shooting technique. Numerical simulations were then perceived to show the consequence of various physical parameters on the plots of velocity, temperature, and… More > Graphic Abstract

    Cross-Diffusion Effects on an MHD Williamson Nanofluid Flow Past a Nonlinear Stretching Sheet Immersed in a Permeable Medium

  • Open Access

    ARTICLE

    Nanofluid Flow across a Moving Plate under Blasius-Rayleigh-Stokes (BRS) Variable Transport Fluid Characteristics

    Hanumesh Vaidya1, Fateh Mebarek-Oudina2,*, K. V. Prasad1, Rajashekhar Choudhari3, Neelufer Z. Basha1, Sangeeta Kalal1

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 65-78, 2024, DOI:10.32604/fhmt.2024.047879

    Abstract This investigation aims to analyze the effects of heat transport characteristics in the unsteady flow of nanofluids over a moving plate caused by a moving slot factor. The BRS variable is utilized for the purpose of analyzing these characteristics. The process of mathematical computation involves converting the governing partial differential equations into ordinary differential equations that have suitable similarity components. The Keller-Box technique is employed to solve the ordinary differential equations (ODEs) and derive the corresponding mathematical outcomes. Figures and tables present the relationship between growth characteristics and various parameters such as temperature, velocity, skin friction coefficient, concentration, Sherwood number,… More > Graphic Abstract

    Nanofluid Flow across a Moving Plate under Blasius-Rayleigh-Stokes (BRS) Variable Transport Fluid Characteristics

  • Open Access

    ARTICLE

    Numerical Study on 3D MHD Darcy-Forchheimer Flow Caused by Gyrotactic Microorganisms of the Bio-Convective Casson Nanofluid across a Stretched Sheet

    S. H. Elhag*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 377-395, 2024, DOI:10.32604/fhmt.2023.044428

    Abstract A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids. Since there are significant gaps in the illumination of existing methods for enhancing heat transmission in nanomaterials, a thorough investigation of the previously outlined models is essential. The goal of the ongoing study is to determine whether the microscopic gold particles that are involved in mass and heat transmission drift in freely. The current study examines heat and mass transfer on 3D MHD Darcy–Forchheimer flow of Casson nanofluid-induced bio-convection past a stretched sheet. The inclusion of the nanoparticles is a result of their… More >

  • Open Access

    ARTICLE

    BOUNDARY LAYER STAGNATION-POINT FLOW OF CASSON FLUID AND HEAT TRANSFER TOWARDS A SHRINKING/STRETCHING SHEET

    Krishnendu Bhattacharyya*

    Frontiers in Heat and Mass Transfer, Vol.4, No.2, pp. 1-9, 2013, DOI:10.5098/hmt.v4.2.3003

    Abstract The steady boundary layer stagnation-point flow of Casson fluid and heat transfer towards a shrinking/stretching sheet is studied. Appropriate similarity transformations are employed to transform the governing partial differential equations into the self-similar ordinary differential equations and those are then solved numerically using very efficient shooting method. The numerical computations are carried out for several values of parameters involved (especially, velocity ratio parameter and Casson parameter) to know the possibility of similarity solution for the boundary layer stagnation-point flow. It is found that the range of velocity ratio parameter for which similarity solution exists is unaltered for any change in… More >

  • Open Access

    ARTICLE

    Numerical Examination of Free Convection Flow of Casson Ternary Hybrid Nanofluid across Magnetized Stretching Sheet Impacted by Newtonian Heating

    Mohammed Z. Swalmeh1,*, Firas A. Alwawi2, A. A. Altawallbeh3, Wejdan Mesa’adeen4, Feras M. Al Faqih4, Ahmad M. Awajan4

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 505-522, 2023, DOI:10.32604/fhmt.2023.044300

    Abstract In current study, the influence of magnetic field (MHD) on heat transfer of natural convection boundary layer flow in Casson ternary hybrid nanofluid past a stretching sheet is studied using numerical simulation. The Newtonian heating boundary conditions that depend on the temperature and velocity terms are taken into this investigation. The particular dimensional governing equations, for the studied problem, are converted to the system of partial differential equations utilizing adequate similarity transformation. Consequently, the system of equations is numerically solved using well-known Kellar box numerical techniques. The obtained numerical results are in excellent approval with previous literature results. The existence… More >

  • Open Access

    ARTICLE

    Mathematical Study of MHD Micropolar Fluid Flow with Radiation and Dissipative Impacts over a Permeable Stretching Sheet: Slip Effects Phenomena

    Pudhari Srilatha1, Ahmed M. Hassan2, B. Shankar Goud3,*, E. Ranjit Kumar4

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 539-562, 2023, DOI:10.32604/fhmt.2023.043023

    Abstract The purpose of this research is to investigate the influence that slip boundary conditions have on the rate of heat and mass transfer by examining the behavior of micropolar MHD flow across a porous stretching sheet. In addition to this, the impacts of thermal radiation and viscous dissipation are taken into account. With the use of various computing strategies, numerical results have been produced. Similarity transformation was utilized in order to convert the partial differential equations (PDEs) that regulated energy, rotational momentum, concentration, and momentum into ordinary differential equations (ODEs). As compared to earlier published research, MATLAB inbuilt solver solution… More > Graphic Abstract

    Mathematical Study of MHD Micropolar Fluid Flow with Radiation and Dissipative Impacts over a Permeable Stretching Sheet: Slip Effects Phenomena

  • Open Access

    ARTICLE

    ENTROPY GENERATION IN BOUNDARY LAYER FLOW OF A MICRO POLAR FLUID OVER A STRETCHING SHEET EMBEDDED IN A HIGHLY ABSORBING MEDIUM

    M. Y. Abdollahzadeh Jamalabadi*

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-13, 2015, DOI:10.5098/hmt.6.7

    Abstract An analytical study of entropy generation in steady boundary layer flow, heat and mass transfer characteristic of 2D convective flow of a micro polar fluid over a stretching sheet embedded through a highly absorbing medium is performed. The governing equations are continuity, momentum boundary layer, micro rotation, and energy takes into account of Rosseland approximation for thermal radiation sources are solved analytically. The governing system of partial differential equations is first transformed into a system of non-linear ordinary differential equations using similarity transformation. The transformed equations are non-linear coupled differential equations which are then linearized by quasi-linearization method and solved… More >

  • Open Access

    ARTICLE

    MIXED CONVECTION BOUNDARY LAYER FLOW OVER A VERTICALLY STRETCHING SHEET WITH CONVECTIVE BOUNDARY CONDITION AND EFFECT OF PARTIAL SLIP

    Mitiku Daba*, P. Devaraj, S. V. Subhashini

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-6, 2015, DOI:10.5098/hmt.6.3

    Abstract In the present study, we investigated a problem of steady laminar mixed convection flow over a vertically stretching sheet with partial slip under convective surface boundary condition. The governing partial differential equations of the boundary layer flow are reduced into a set of nonlinear ordinary differential equations using a suitable similarity transformations. The system of non linear ordinary differential equations are solved by the Keller box method. Velocity, temperature and heat transfer rate are analyzed by considering the important parameters: Prandtl number Pr, convective parameter ε, slip parameter K and mixed convection parameter λ on the fluid flow and the… More >

  • Open Access

    ARTICLE

    EFFECTS OF CHEMICAL REACTION AND THERMAL RADIATION ON HEAT GENERATED STRETCHING SHEET IN A COUPLE STRESS FLUID FLOW

    G. Nagarajua,† , Anjanna Mattab, K. Kaladharc

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-5, 2016, DOI:10.5098/hmt.7.11

    Abstract A theoretical steady of two-dimensional and MHD couple stress fluid flow over a linearly stretching sheet is investigated with the effects of thermal radiation, internal heat generation and homogeneous chemical reaction of first order. The governing equations of continuity, momentum, energy and diffusion for this boundary layer flow are transformed into one set of coupled non-linear ordinary differential equations using the local similarity transformation and are then solved using the fourth-order Runge-Kutta method along with the shooting technique. The effects of the couple stress parameter (S), Magnetic parameter (M) and chemical reaction parameter (Cr) are presented through the graphical illustrations.… More >

  • Open Access

    ARTICLE

    INFLUENCE OF VARIABLE THERMAL CONDUCTIVITY ON MHD CASSON FLUID FLOW OVER A STRETCHING SHEET WITH VISCOUS DISSIPATION, SORET AND DUFOUR EFFECTS

    B. Venkateswarlua, P.V. Satya Narayanab,*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-9, 2016, DOI:10.5098/hmt.7.16

    Abstract This paper studies the Soret and Dufour effects on MHD flow of a Casson fluid past a stretching sheet in the presence of chemical reaction, viscous dissipation and variable thermal conductivity. The fluid is taken to be electrically conducting and the flow is induced by a stretching surface. The governing partial differential equations are transformed into non-linear ordinary differential equations using similarity transformations. The resulting equations are then solved numerically by shooting method. The impact of various stimulating parameters on the flow, heat and mass transfer characteristics are analyzed and discussed in detail through graphs. It is observed that the… More >

Displaying 1-10 on page 1 of 48. Per Page