Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (48)
  • Open Access

    ARTICLE

    MHD SLIP FLOW AND HEAT TRANSFER OVER AN EXPONENTIALLY STRETCHING PERMEABLE SHEET EMBEDDED IN A POROUS MEDIUM WITH HEAT SOURCE

    P. R. Sharmaa , Sushila Choudharya,* , O. D. Makindeb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.18

    Abstract Steady two dimensional laminar magnetohydrodynamic (MHD) slip flow and heat transfer of a viscous incompressible and electrically conducting fluid past over a flat exponentially non-conducting stretching porous sheet embedded in a porous medium with non uniform permeability in the presence of non uniform heat source is investigated. The governing equations of velocity and temperature distributions are solved numerically and the effects of different physical parameters are shown through graphs. The rate of shear stress and the rate of heat transfer at the sheet are derived, discussed numerically and their numerical values for various values of physical parameters are presented through… More >

  • Open Access

    ARTICLE

    A COMPARATIVE STUDY OF THERMAL RADIATION EFFECTS ON MHD FLOW OF NANOFLUIDS AND HEAT TRANSFER OVER A STRETCHING SHEET

    T. Sravan Kumar, B. Rushi Kumar*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.13

    Abstract In this work, the steady natural convective boundary layer flow of nanofluid and heat transfer over a stretching sheet in the presence of a uniform transverse magnetic field is investigated. We consider two different base fluids and three different nanoparticles were examined as nanofluid. A new model was used in the simulation of nanofluid. Similarity transformations are used to obtain a system of nonlinear ordinary differential equations. The resulting equations are solved numerically by shooting method with Runge-Kutta fourth order scheme (MATLAB package). The effects of various parameters describing the transport in the presence of thermal radiation, buoyancy parameter, magnetic… More >

  • Open Access

    ARTICLE

    SORET AND DUFOUR EFFECTS ON MHD FLOW OF A MAXWELL FLUID OVER A STRETCHING SHEET WITH JOULE HEATING

    B. Venkateswarlua, P.V. Satya Narayanab,*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.11

    Abstract An analysis has been carried out to study the mixed convection flow, heat and mass transfer of an incompressible electrically conducting Maxwell fluid past a vertical stretching sheet in the presence of chemical reaction with thermal diffusion (Soret) and diffusion-thermo (Dufour) effects. The governing nonlinear partial differential equations along with the appropriate boundary conditions are non-dimensionalized using suitable similarity variables. The resulting transformed ordinary differential equations are then solved numerically by shooting technique with fourth order Runge - Kutta method. The influence of various physical parameters on the flow, heat and mass transfer characteristics are discussed through graphs and tables.… More >

  • Open Access

    ARTICLE

    MHD FLOW AND HEAT TRANSFER OF AN EYRING - POWELL FLUID OVER A LINEAR STRETCHING SHEET WITH VISCOUS DISSIPATION - A NUMERICAL STUDY

    P.V. Satya Narayana1,* , Nainaru Tarakaramu1 , S. Moliya Akshit2 , Jatin P. Ghori2

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-5, 2017, DOI:10.5098/hmt.9.9

    Abstract The present work is devoted to study the numerical simulation of steady magnetohydrodynamic flow and heat transfer of an Eyring-Powell fluid over a stretching sheet with viscous dissipation. The fluid is taken to be two dimensional electrically conducting and the flow is induced by a stretching surface. The basic governing partial differential equations of non-Newtonian fluid are reduced into the coupled nonlinear ordinary differential equations by using similarity transformations. The resulting ordinary differential equations are then solved numerically using shooting method with fourth order Runge- Kutta scheme. The effects of Hartmann number, Eckert number, Grashoff number and Eyring-Powell fluid parameters… More >

  • Open Access

    ARTICLE

    NONLINEAR RADIATIVE HEAT TRANSFER TO CARREAU FLUID OVER A NONLINEAR STRETCHING SHEET IN A POROUS MEDIUM IN THE PRESENCE OF NON-UNIFORM HEAT SOURCE/SINK AND VISCOUS DISSIPATION

    M. Umeshaiah1 , M. R. Krishnamurthy2 , N.G. Rudraswamy3 , B. J. Gireesha4, B.C. Prasannakumara5,*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.4

    Abstract This article presents the effect of nonlinear thermal radiation on boundary layer flow and heat transfer of Carreau fluid model over a nonlinear stretching sheet embedded in a porous medium in the presence of non-uniform heat source/sink and viscous dissipation with convective boundary condition. The governing partial differential equations with the corresponding boundary conditions are reduced to a set of ordinary differential equations using similarity transformation, which is then solved numerically by the fourth-fifth order Runge–Kutta-Fehlberg integration scheme featuring a shooting technique. The influence of significant parameters such as power law index parameter, Stretching parameter, Weissenberg number, permeability parameter, temperature… More >

  • Open Access

    ARTICLE

    MULTIPLE SLIPS AND CHEMICAL REACTION EFFECTS ON MHD STAGNATION POINT FLOW OF CASSON FLUID OVER A STRETCHING SHEET WITH VISCOUS AND JOULES HEATING

    G. Vinod Kumar, R. V. M. S. S. Kiran Kumar* , S. V. K. Varma

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.23

    Abstract The steady boundary layer stagnation flow of a Casson fluid over a stretching sheet with slips boundary conditions in the presence of viscous dissipation, Joule heating and the first order destructive chemical reaction is analyzed. The governing flow problem is based on momentum equation, energy equation, and mass diffusion equation and these are further simplified with the help of similarity transformations. The reduced, resulting highly nonlinear coupled ordinary differential equations are solved using the Matlab bvp4c package. The effects of various parameters on the dimensionless velocity, temperature, and concentration as well as on the skin friction coefficient and the rate… More >

  • Open Access

    ARTICLE

    BIO-MATHEMATICAL ANALYSIS FOR THE STAGNATION POINT FLOW OVER A NON-LINEAR STRETCHING SURFACE WITH THE SECOND ORDER VELOCITY SLIP AND TITANIUM ALLOY NANOPARTICLE

    S.R.R. Reddya , P. Bala Anki Reddya,*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-11, 2018, DOI:10.5098/hmt.10.13

    Abstract The main object of this paper is to steady the Bio-mathematical analysis for the stagnation point flow over a non-linear stretching sheet with the velocity slip and Casson fluid model. Analysis for the both titanium and titanium alloy within the pure blood as taken as the base fluid. The governing non-linear partial differential equations are transformed into ordinary which are solved numerically by utilizing the fourth order RungeKutta method with shooting technique. Graphical results have been presented for dimensionless stream function, velocity profile, shear stress, temperature profile for various physical parameters of interest. It was found that the velocity profile… More >

  • Open Access

    ARTICLE

    BUOYANCY RATIO AND HEAT SOURCE EFFECTS ON MHD FLOW OVER AN INCLINED NON-LINEARLY STRETCHING SHEET

    Thirupathi Thummaa,*, M.D. Shamshuddinb

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-12, 2018, DOI:10.5098/hmt.10.5

    Abstract This paper numerically investigates the magnetohydrodynamic boundary layer convective flow of an electrically conducting fluid in the presence of buoyancy ratio, heat source, variable magnetic field and radiation over an inclined nonlinear stretching sheet under convective surface boundary conditions. The Rosseland approximation is adopted for thermal radiation effects and the non-uniform magnetic field applied in a transverse direction to the flow. The coupled nonlinear momentum, thermal and species concentration governing boundary layer equations are rendered into a system of third order momentum and second order energy and mass diffusion ordinary differential equations via similarity transformations with appropriate boundary conditions. The… More >

  • Open Access

    ARTICLE

    SLIP EFFECT ON HEAT AND MASS TRANSFER IN CASSON FLUID WITH CATTANEO-CHRISTOVE HEAT FLUX MODEL

    P. Bala Anki Reddya , B. Mallikarjunab,*,K. Madhu Sudhan Reddya

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-10, 2018, DOI:10.5098/hmt.11.5

    Abstract In this paper, a mathematical model has been developed to analyze the double diffusive convective flow of Casson fluid over an inclined stretching sheet with Cattaneo-Christov Heat Flux model. The velocity slip is considered over the surface of the stretching sheet as well. The governing equations for the pertinent model are transformed into non-dimensional highly coupled nonlinear differential equations using similarity transformations. The implicit finite difference method is used to carry out the numerical results and presented the graphs for different values of the physical parameter, Casson fluid parameter, and thermal relation time parameter, chemical reaction parameter for the cases… More >

  • Open Access

    ARTICLE

    INVESTIGATION ON CNTS-WATER AND HUMAN BLOOD BASED CASSON NANOFLUID FLOW OVER A STRETCHING SHEET UNDER IMPACT OF MAGNETIC FIELD

    Hamzeh T. Alkasasbeha,*, Mohammed Z. Swalmehb , Hebah G. Bani Saeedc , Feras M. Al Faqihc , Adeeb G. Talafhac

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-7, 2020, DOI:10.5098/hmt.14.15

    Abstract This study aims at considering the properties of heat transfer and magneto-hydrodynamics (MHD) Casson nanofluid at the existence of free convection boundary layer flow with Carbon Nanotubes (CNTs) suspended in human blood/water as based fluid on a stretching sheet. Two types of CNTs nanoparticles, single walled carbon nanotubes (SWCNTs) and multi walled carbon nanotubes (MWCNTs), are taken into account. The governing partial differential equations are transformed to partial differential equations using similar transformation, then solved numerically by an implicit finite difference scheme known as Keller-box method (KBM). The results for physical quantities, the local skin friction, and local Nusselt number,… More >

Displaying 21-30 on page 3 of 48. Per Page