Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (48)
  • Open Access

    ARTICLE

    Numerical Study for Magnetohydrodynamic (MHD) Unsteady Maxwell Nanofluid Flow Impinging on Heated Stretching Sheet

    Muhammad Shoaib Arif1,2,*, Muhammad Jhangir2, Yasir Nawaz2, Imran Abbas2, Kamaleldin Abodayeh1, Asad Ejaz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.2, pp. 303-325, 2022, DOI:10.32604/cmes.2022.020979

    Abstract The numerous applications of Maxwell Nanofluid Stagnation Point Flow, such as those in production industries, the processing of polymers, compression, power generation, lubrication systems, food manufacturing and air conditioning, among other applications, require further research into the effects of various parameters on flow phenomena. In this paper, a study has been carried out for the heat and mass transfer of Maxwell nanofluid flow over the heated stretching sheet. A mathematical model with constitutive expressions is constructed in partial differential equations (PDEs) through obligatory basic conservation laws. A series of transformations are then used to take the system into an ordinary… More >

  • Open Access

    REVIEW

    Hydromagnetic Nanofluid Film Flow over a Stretching Sheet with Prescribed Heat Flux and Viscous Dissipation

    Nourhan I. Ghoneim1,*, Ahmed M. Megahed2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1373-1388, 2022, DOI:10.32604/fdmp.2022.020509

    Abstract Thermal radiative heat transfer through a thin horizontal liquid film of a Newtonian nanofluid subjected to a magnetic field is considered. The physical boundary conditions are a variable surface heat flux and a uniform concentration along the sheet. Moreover, viscous dissipation is present and concentration is assumed to be influenced by both thermophoresis and Brownian motion effects. Using a similarity method to turn the underlying Partial differential equations into a set of ordinary differential equations (ODEs) and a shooting technique to solve these equations, the skin-friction coefficient, the Nusselt number, and the Sherwood number are determined. Among other things, it… More >

  • Open Access

    ARTICLE

    Analysis of Convective Transport of Temperature-Dependent Viscosity for Non-Newtonian Erying Powell Fluid: A Numerical Approach

    Ahlam Aljabali1, Abdul Rahman Mohd Kasim1,*, Nur Syamilah Arifin2, Sharena Mohamad Isa3, Noor Amalina Nisa Ariffin1

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 675-689, 2021, DOI:10.32604/cmc.2020.012334

    Abstract Non-Newtonian is a type of fluid that does not comply with the viscosity under the Law of Newton and is being widely used in industrial applications. These include those related to chemical industries, cosmetics manufacturing, pharmaceutical field, food processing, as well as oil and gas activities. The inability of the conventional equations of Navier–Stokes to accurately depict rheological behavior for certain fluids led to an emergence study for non-Newtonian fluids’ models. In line with this, a mathematical model of forced convective flow on non-Newtonian Eyring Powell fluid under temperature-dependent viscosity (TDV) circumstance is formulated. The fluid model is embedded with… More >

  • Open Access

    ARTICLE

    MHD Flow and Nonlinear Thermal Radiative Heat Transfer of Dusty Prandtl Fluid over a Stretching Sheet

    K. Ganesh Kumar1, *, S. Manjunatha2, N. G. Rudraswamy3

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 131-146, 2020, DOI:10.32604/fdmp.2020.0152

    Abstract Boundary layer flows and melting heat transfer of a Prandtl fluid over a stretching surface in the presence of fluid particle suspensions has been investigated. The converted set of boundary layer equations are solved numerically by RKF-45 method. Obtained numerical results for flow and heat transfer characteristics are deliberated for various physical parameters. Furthermore, the skin friction coefficient and Nusselt number are also presented in Tabs. 2 and 3. It is found that the heat transfer rates are advanced in occurrence of nonlinear radiation compered to linear radiation. Also, it is noticed that velocity and temperature profile increases by increasing… More >

  • Open Access

    ARTICLE

    Radiation and Chemical Reaction Effects on Nanofluid Flow Over a Stretching Sheet

    Anupam Bhandari1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.5, pp. 557-582, 2019, DOI:10.32604/fdmp.2019.04108

    Abstract The present research aims to examine the steady state of the two-dimensional incompressible magnetohydrodynamics (MHD) flow of a micropolar nanofluid over a stretching sheet in the presence of chemical reactions, radiation and viscous dissipation. The effect of particle rotation is taken into account. A conducting fluid passes over a semi-infinite plate with variable temperature while a magnetic field is directed in the transverse direction. Results for velocity, angular momentum, temperature and concentration profiles are obtained for various values of Eckert number, Schmidt number, Prandtl number, thermophosis parameter and Brownian motion parameters. A similarity approach is used to transform the original… More >

  • Open Access

    ARTICLE

    Non-Aligned Stagnation Point Flow of a Casson Fluid Past a Stretching Sheet in a Doubly Stratified Medium

    N. Vijaya1, G. Venkata Ramana Reddy1, *, Y. Hara Krishna1

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.3, pp. 233-251, 2019, DOI:10.32604/fdmp.2019.03727

    Abstract This paper investigates the problem of oblique hydro magnetic stagnation point flow of an electrically conducting Casson fluid over stretching sheet embedded in a doubly stratified medium in the presence of thermal radiation and heat source/absorption with first order chemical reaction. It is assumed that the fluid impinges on the wall obliquely. Similarity variables were used to convert the partial differential equations to ordinary differential equations. The transformed ordinary differential equations are solved numerically using Runge-Kutta-Fehlberg method with shooting technique. It is observed that a boundary layer is formed when the stretching velocity of the surface is less than the… More >

  • Open Access

    ARTICLE

    Magnetohydrodynamic Flow and Heat Transfer of an Upper-Convected Maxwell Fluid Due to a Stretching Sheet

    R. C. Bataller1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.2, pp. 153-174, 2011, DOI:10.3970/fdmp.2011.007.153

    Abstract We present a numerical study of the flow and heat transfer of an incompressible upper-convected Maxwell (UCM) fluid in the presence of an uniform transverse magnetic field over a porous stretching sheet taking into account suction at the surface as well as viscous dissipation and thermal radiation effects. Selected similarity analyses have been carried out by means of a numerical implementation. The effects on the velocity and temperature fields over the sheet of the parameters like elasticity number, suction velocity, magnetic parameter, radiation parameter, Prandtl number and Eckert number are also analyzed. More >

  • Open Access

    ARTICLE

    Towards a Numerical Benchmark for MHD Flows of Upper-Convected Maxwell (UCM) Fluids over a Porous Stretching Sheet

    R.C. Bataller1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.3, pp. 337-350, 2010, DOI:10.3970/fdmp.2010.006.337

    Abstract The present research gathers an accurate numerical study of the laminar flow induced in an incompressible upper-convected Maxwell (UCM) fluid by a linear stretching of a flat, horizontal and porous sheet in the presence of a transverse magnetic field. The governing partial differential equations are converted into an ordinary differential equation by a similarity transformation. The effects on the velocity field over the sheet of the parameters like elasticity number, suction/blowing velocity, and magnetic parameter are also studied. It has also been attempted to show capabilities and wide-range applications of the 4thorder Runge-Kutta method in comparison with the homotopy analysis… More >

Displaying 41-50 on page 5 of 48. Per Page