Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access



    Rongge Xiaoa , Wenbo Jina,*, Shicong Hanb , Rui Lia , Xuewen Caoc

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.6

    Abstract Combines theories of gas dynamics, fluid dynamics and numerical heat transfer theory, the condensing flow characteristics of water vapor in wet natural gas within the Laval nozzle were studied. A mathematical model was developed to predict the spontaneous condensing phenomenon in the supersonic flows using the classical nucleation and droplet growth theories. The numerical approach is validated with the experimental data by using UDF and UDS modules in FLUENT software, which shows a good agreement between them, and showed that the mathematical model can better predict the parameter changes in the condensation process. The condensation characteristics of water vapor in… More >

  • Open Access



    Huan Zhenga,*, Yuliang Mab , Huaping Meic , Xiaohong Xua , Xiguang Chend , Xunchen Caoe

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-6, 2018, DOI:10.5098/hmt.11.34

    Abstract The supersonic separator has proved to be an effective method to condense and separate CO2 from natural gas, and the inlet temperature plays a vital role on condensation characteristics of CO2 in the supersonic separator due to the instability temperature of wellhead natural gas. In this paper, the physical and mathematical models for the supersonic condensation process of CO2 in the natural gas were established on the basis of CO2 droplet surface tension, nucleation and growth model. The flow and condensation parameters were investigated under different temperature conditions. The results show that when the inlet gas pressure is 8.0 MPa,… More >

  • Open Access



    Rongge Xiaoa,*, Shuaishuai Jina, Xin Fengb, Peng Zhangc, Zheng Daic

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-7, 2021, DOI:10.5098/hmt.16.25

    Abstract With the increasing production and use of natural gas, the supersonic nozzle has become focus of the impurity removal research. In this paper, the modified classical nucleation model is used as the condensation nucleation model, and the Gyarmathy growth model is selected as the droplet growth model. Based on the assumption of no phase slip and Eulerian two fluid model, the flow control equation of wet natural gas is established. By giving the selection criteria as a turbulence equation, the SRK real gas equation is used to carry out the corresponding numerical simulation. The required supersonic nozzle structure and grid… More >

  • Open Access


    Numerical Simulation about the Characteristics of the Store Released from the Internal Bay in Supersonic Flow

    Xiaohui Cheng1, Haiqing Si1,*, Yao Li1, Peihong Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1729-1742, 2023, DOI:10.32604/cmes.2023.022694

    Abstract To understand the influence of the initial release conditions on the separation characteristics of the store and improve it under high Mach number (Ma = 4) flight conditions, the overset grid method and the Realizable turbulence model coupled with an equation with six degrees of freedom are used to simulate the store released from the internal bay. The motion trajectory and the attitude angle of the store separation under the conditions of different centroid, velocity, height and control measures are given by the calculated result. Through analysis, the position of the centroid will affect the separation of the store, which needs to… More >

  • Open Access


    Computational Analysis of Surface Pressure Distribution over a 2D Wedge in the Supersonic and Hypersonic Flow Regimes

    Javed S. Shaikh1,*, Krishna Kumar1, Khizar A. Pathan2, Sher A. Khan3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1637-1653, 2023, DOI:10.32604/fdmp.2023.025113

    Abstract The complex fluid-dynamic instabilities and shock waves occurring along the surface of a two-dimensional wedge at high values of the Mach number are studied here through numerical solution of the governing equations. Moreover, a regression model is implemented to determine the pressure distribution for various Mach numbers and angles of incidence. The Mach number spans the interval from 1.5 to 12. The wedge angles (θ) are from 5° to 25°. The pressure ratio (P2/P1) is reported at various locations (x/L) along the 2D wedge. The results of the numerical simulations are compared with the regression model showing good agreement. More >

  • Open Access


    Numerical Analysis of Cavity-Based Control of Base Pressure Variations at Supersonic Mach Numbers

    Ridwan1, Sher Afghan Khan1,*, Jaffar Syed Mohamed Ali1, Mohd. Azan Mohammed Sapardi1, Abdul Aabid2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1655-1678, 2023, DOI:10.32604/fdmp.2023.025230

    Abstract In the present study, the base pressure variations induced by the presence of a cavity, known to have a strong influence of the behaviour of supersonic projectiles, are investigated through numerical solution of the balance equations for mass, momentum, and energy. An area ratio of four is considered and numerical simulations are carried out at Mach M = 1.2, 1.4, 1.6, and 1.8 assuming no cavity or cavity locations 0.5D, 1D, 1.5D, and 2D. The inlet pressure of the nozzle is considered as a flow variable. The Taguchi method is also used, and the considered cases are then analyzed using… More >

  • Open Access


    Title Supersonic Condensation and Separation Characteristics of CO2-Rich Natural Gas under Different Pressures

    Yong Zheng1, Lei Zhao1, Yujiang Wang1, Feng Chang1, Weijia Dong2,*, Xinying Liu2, Yunfei Li2, Xiaohan Zhang2, Ziyuan Zhao3

    Energy Engineering, Vol.120, No.2, pp. 529-540, 2023, DOI:10.32604/ee.2023.022765

    Abstract Supersonic separation technology is a new natural gas sweetening method for the treatment of natural gas with high CO2 (carbon dioxide) content. The structures of the Laval nozzle and the supersonic separator were designed, and the mathematical models of supersonic condensation and swirling separation for CO2-CH4 mixture gas were established. The supersonic condensation characteristics of CO2 in natural gas and the separation characteristics of condensed droplets under different inlet pressures were studied. The results show that higher inlet pressure results in a larger droplet radius and higher liquid phase mass fraction; additionally, the influence of centrifugal force is more pronounced,… More >

  • Open Access


    Passive Control of Base Pressure in a Converging-Diverging Nozzle with Area Ratio 2.56 at Mach 1.8

    Nur Husnina Muhamad Zuraidi1, Sher Afghan Khan1,*, Abdul Aabid2,*, Muneer Baig2, Istiyaq Mudassir Shaiq3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 807-829, 2023, DOI:10.32604/fdmp.2023.023246

    Abstract In this study, a duct is considered and special attention is paid to a passive method for the control of the base pressure relying on the use of a cavity with a variable aspect ratio. The Mach number considered is 1.8, and the area ratio of the duct is 2.56. In particular, two cavities are examined, their sizes being 3:3 and 6:3. The used L/D spans the interval 1–10 while the NPRs (nozzle pressure ratio) range from 2 to 9. The results show that the control becomes effective once the nozzles are correctly expanded or under-expanded. The pressure contours at… More >

  • Open Access


    A Numerical Study on Supersonic Combustion Optimization Based on the Streamwise Vortex-Couple Method

    Hao Tian, Yongkang Zheng*, Hanxin Zhang

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 207-222, 2023, DOI:10.32604/fdmp.2023.019790

    Abstract In this paper, some typical methods to promote mixing in supersonic combustion are reviewed, and the fluid-dynamic mechanism underpinning the development of the supersonic shear layer in the presence of a streamwise vortex is analyzed through computational fluid dynamics. It is proven that the streamwise vortex-couple method is an excellent approach to enhance mixing. A specific combustor design is proposed accordingly. More >

  • Open Access


    Post-Buckling and Panel Flutter of Pre-Heated Functionally Graded Plates

    Wei Xia1,2,*, Weilin Kong1, Yupeng Feng1, Shengping Shen1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-2, 2022, DOI:10.32604/icces.2022.08765

    Abstract Post-buckling and panel flutter behaviors of ceramic-metal FGM plates are studied for the skins of supersonic aircrafts. The effects of asymmetric material and temperature distributions, as well as the aerodynamic loads, on the thermo-mechanical response of FGM plates are discussed using finite element simulations. The aero-thermo-elastic model is established by using the simple power law material distribution, the rule of mixture for material effective properties, the nonlinear Fourier equations of heat conduction, von-Karman strain-displacement nonlinear relations, and the piston theory for supersonic aerodynamics. The finite element equations are established using the first-order shear deformable plate elements. The thermal post-buckling equilibrium… More >

Displaying 1-10 on page 1 of 18. Per Page