Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Revolutionizing Biodegradable and Sustainable Materials: Exploring the Synergy of Polylactic Acid Blends with Sea Shells

    Prashanth K P1,*, Rudresh M2, Venkatesh N3, Poornima Gubbi Shivarathri4, Shwetha Rajappa5

    Journal of Renewable Materials, Vol.12, No.12, pp. 2115-2134, 2024, DOI:10.32604/jrm.2024.055437 - 20 December 2024

    Abstract This study explores the mechanical properties of a novel composite material, blending polylactic acid (PLA) with sea shells, through a comprehensive tensile test analysis. The tensile test results offer valuable insights into the material’s behavior under axial loading, shedding light on its strength, stiffness, and deformation characteristics. The results suggest that the incorporation of sea shells decrease the tensile strength of 14.55% and increase the modulus of 27.44% for 15 wt% SSP (sea shell powder) into PLA, emphasizing the reinforcing potential of the mineral-rich sea shell particles. However, a potential trade-off between decreased strength and… More >

  • Open Access

    ARTICLE

    On Designing Biopolymer-Bound Soil Composites (BSC) for Peak Compressive Strength

    Isamar Rosa1, Henning Roedel1, Maria I. Allende1, Michael D. Lepech1,*, David J. Loftus2

    Journal of Renewable Materials, Vol.8, No.8, pp. 845-861, 2020, DOI:10.32604/jrm.2020.09844 - 10 July 2020

    Abstract Biopolymer-bound Soil Composites (BSC), are a novel bio-based construction material class, produced through the mixture and desiccation of biopolymers with inorganic aggregates with applications in soil stabilization, brick creation and in situ construction on Earth and space. This paper introduces a mixture design methodology to produce maximum strength for a given soil-biopolymer combination. Twenty protein and sand mix designs were investigated, with varying amounts of biopolymer solution and compaction regimes during manufacture. The ultimate compressive strength, density, and shrinkage of BSC samples are reported. It is observed that the compressive strength of BSC materials increases proportional More >

  • Open Access

    ARTICLE

    Sustainable Materials Based on Cellulose from Food Sector Agro-Wastes

    T. Côto1, I. Moura1, A. de Sá1,*, C. Vilarinho2, A. V. Machado1

    Journal of Renewable Materials, Vol.6, No.7, pp. 688-696, 2018, DOI:10.32604/JRM.2018.00006

    Abstract Biopolymers exhibit unique properties and can be produced from plants’ and crops’ wastes. Cellulose has been used for the production of sustainable materials, nevertheless due to the difficulty inherent to its extraction, several methods have been studied in order to optimize the process. Therefore, this paper reports the extraction of natural polymers from food sector agro-food wastes, including cellulose, following a green chemistry aproach. The cellulose extracted from pumpkin peel was acetylated and dispersed in a polylactic acid (PLA) matrix. The developed materials were characterized in terms of their structure, morphology and thermal stability. The More >

Displaying 1-10 on page 1 of 3. Per Page