Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ABSTRACT

    Modified frame of Quasi Conforming and Application in Reissner-Mindlin Shell

    Ping Hu, Yang Xia, Limin Tang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.17, No.3, pp. 75-76, 2011, DOI:10.3970/icces.2011.017.075

    Abstract In this paper, a modified paradigm of quasi conforming finite element method with truncated polynomial expansions of in-domain displacements and derived expansions of strains is introduced. The purpose is to improve the drawbacks of the traditional one that neglecting the connections between the components of strain and lack of principle in the process of choosing polynomial expansions. Based on the modified framework a four-node quadrilateral flat shell element with complete quadratic polynomials for membrane and bending displacement fields is developed. Numerical tests are carried out for validation of the present element. The results show that More >

  • Open Access

    ARTICLE

    Application of the Differential Transform Method for Solving Periodic Solutions of Strongly Non-linear Oscillators

    Hsin-Ping Chu1, Cheng-Ying Lo2

    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.3&4, pp. 161-172, 2011, DOI:10.3970/cmes.2011.077.161

    Abstract This paper presents the application of the differential transform method to solve strongly nonlinear equations with cubic nonlinearities and self-excitation terms. First, the equations are transformed by the differential transform method into the algebra equations in terms of the transformed functions. Secondly, the higher-order transformed functions are calculated in terms of other lower-order transformed functions through the iterative procedure. Finally, the solutions are approximated by the n-th partial sum of the infinite series obtained by the inverse differential transform. Two strongly nonlinear equations with different coefficients and initial conditions are given as illustrative examples. More >

  • Open Access

    ARTICLE

    A Four-Node Reissner-Mindlin Shell with Assumed Displacement Quasi-Conforming Method

    Ping Hu1, Yang Xia1, Limin Tang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.73, No.2, pp. 103-136, 2011, DOI:10.3970/cmes.2011.073.103

    Abstract In this paper, an assumed displacement quasi-conforming finite element method with truncated polynomial expansions of in-domain displacements and derived expansions of strains is introduced. Based on the method a four-node quadrilateral flat shell element with complete quadratic polynomials for membrane and bending displacement fields is developed. Numerical tests are carried out for validation of the present element. The results show that the present element preserves all the advantages of the quasi-conforming i.e., explicit stiffness matrix, convenient post processing and free from membrane locking and shear locking. The tests also prove that the present element gives More >

  • Open Access

    ARTICLE

    Design Optimization of a Conical Annular Centrifugal Contractor

    M. N. Noui-Mehidi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.2, pp. 141-152, 2011, DOI:10.3970/fdmp.2011.007.141

    Abstract The present work is concerned with a numerical study of the performance of a conical annular centrifugal contractor through the analysis of the flow properties when the apex angle is changed for different imposed axial flows. The calculations revealed the advantage of using conical annular centrifugal contractors compared to the cylindrical annular centrifuges. The study is conducted by a comparison analysis of the hydrodynamics of fluid flow in both conical and cylindrical contractors where moderate axial flows are imposed. In both systems the outer body is stationary while the inner rotor is maintained at constant More >

  • Open Access

    ARTICLE

    An Efficient Petrov-Galerkin Chebyshev Spectral Method Coupled with the Taylor-series Expansion Method of Moments for Solving the Coherent Structures Effect on Particle Coagulation in the Exhaust Pipe

    Chan T.L.1,2, Xie M.L.1,3, Cheung C.S.1

    CMES-Computer Modeling in Engineering & Sciences, Vol.51, No.3, pp. 191-212, 2009, DOI:10.3970/cmes.2009.051.191

    Abstract An efficient Petrov-Galerkin Chebyshev spectral method coupled with the Taylor-series expansion method of moments (TEMOM) was developed to simulate the effect of coherent structures on particle coagulation in the exhaust pipe. The Petrov-Galerkin Chebyshev spectral method was presented in detail focusing on the analyticity of solenoidal vector field used for the approximation of the flow. It satisfies the pole condition exactly at the origin, and can be used to expand the vector functions efficiently by using the solenoidal condition. This developed TEMOM method has no prior requirement for the particle size distribution (PSD). It is… More >

  • Open Access

    ARTICLE

    A Meshless Approach to Capturing Moving Interfaces in Passive Transport Problems

    L. Mai-Cao1, T. Tran-Cong2

    CMES-Computer Modeling in Engineering & Sciences, Vol.31, No.3, pp. 157-188, 2008, DOI:10.3970/cmes.2008.031.157

    Abstract This paper presents a new meshless numerical approach to solving a special class of moving interface problems known as the passive transport where an ambient flow characterized by its velocity field causes the interfaces to move and deform without any influences back on the flow. In the present approach, the moving interface is captured by the level set method at all time as the zero contour of a smooth function known as the level set function whereas one of the two new meshless schemes, namely the SL-IRBFN based on the semi-Lagrangian method and the Taylor-IRBFN More >

Displaying 11-20 on page 2 of 16. Per Page