Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (369)
  • Open Access

    ARTICLE

    Modeling in Thermal Behavior of Charring Materials

    Weijie Li1, Haiming Huang1,2, Bangcheng Ai3, Ye Tian1

    CMC-Computers, Materials & Continua, Vol.43, No.3, pp. 175-196, 2014, DOI:10.3970/cmc.2014.043.175

    Abstract Physical and mathematical models are the key to analyze thermal behavior of charring materials in the thermal protection system of reentry vehicles subjected to aerodynamic heating. To explore the thermal behavior of charring ablator, we developed and compared two models (pyrolysis interface model and pyrolysis layer model) with pyrolysis and surface recession. Taking AVCOAT composites as an example, its nonlinear thermal behavior, which are caused by temperature dependent thermal properties, moving interfaces and moving boundary, were simulated using the calculation codes written respectively on the basis of the pyrolysis layer model and the pyrolysis interface model. Numerical results indicate that… More >

  • Open Access

    ARTICLE

    A Cell Method Stress Analysis in Thin Floor Tiles Subjected to Temperature Variation

    E. Ferretti1

    CMC-Computers, Materials & Continua, Vol.36, No.3, pp. 293-322, 2013, DOI:10.3970/cmc.2013.036.293

    Abstract The Cell Method is applied in order to model the debonding mechanism in ceramic floor tiles subjected to positive thermal variation. The causes of thermal debonding, very usual in radiant heat floors, have not been fully clarified at the moment. There exist only a few simplified analytical approaches that assimilate this problem to an eccentric tile compression, but these approaches introduce axial forces that, in reality, do not exist. In our work we have abandoned the simplified closed form solution in favor of a numerical solution, which models the interaction between tiles and sub-base more realistically, when the positive thermal… More >

  • Open Access

    ARTICLE

    Numerical Evaluation of Variation in ‘Characteristic Distance’ due to Fracture Specimen Thickness and Temperature

    Sanjeev Saxena1, Raghvendra Singh2, Geeta Agnihotri2

    CMC-Computers, Materials & Continua, Vol.36, No.3, pp. 257-270, 2013, DOI:10.3970/cmc.2013.036.257

    Abstract The present numerical study is an attempt to understand the dependency of characteristic distance on the fracture specimen thickness and temperature. The presented work will be useful to establish the characteristic distance prediction methodology using three dimensional FEM model. Based on the methods proposed for the numerical prediction of characteristic distance, it comes out that it depends on fracture specimen thickness and finally it converges after a specified thickness of fracture specimen. In Armco iron material, characteristic distance varies in temperature ranges where dynamic strain ageing phenomenon is observed, initially decrease and then increases again. More >

  • Open Access

    ARTICLE

    Thermal-Mechanical and Thermodynamic Properties of Graphene Sheets using a Modified Nosé-Hoover Thermostat

    Ching-Feng Yu1, Wen-Hwa Chen1,2, Kun-Ling Chen1, Hsien-Chie Cheng2,3

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 203-229, 2013, DOI:10.3970/cmc.2013.036.203

    Abstract The investigation assesses the thermal-mechanical and thermodynamic properties of various graphene sheets using a modified Nosé-Hoover (NH) thermostat method incorporated with molecular dynamics (MD) simulation. The investigation begins with an exploration of their thermal-mechanical properties at atmospheric pressure, including Young’s modulus, shear modulus, Poisson’s ratio, specific heats and linear and volumetric coefficients of thermal expansion (CTE). Two definitions of the line change ratio (ΔL/L) are utilized to determine the linear CTE of graphene sheets, and the calculations are compared with each other and data in the literature. To estimate the volumetric CTE values, the Connolly surface method is applied to… More >

  • Open Access

    ARTICLE

    Effects of Surface Orientation and Temperature on Tensile Deformation of Gold Nanowires

    Qunfeng Liu1, gping Shen2

    CMC-Computers, Materials & Continua, Vol.17, No.1, pp. 59-76, 2010, DOI:10.3970/cmc.2010.017.059

    Abstract Molecular Dynamics (MD) simulations have been performed using the EAM potential to investigate the deformation behaviors and mechanical properties of <100>/{100} gold nanowires with square cross-section at a certain strain rate under different temperatures ranging from 10 K to 700 K. It is found that <100>/{100} gold nanowires at high temperatures tend to form the extended stable nanobridges-Helical Multi-shell Structure (HMS), which is similar to the deformation behavior of <110> gold nanowires at room temperature reported in the previous experimental observations and simulations. The effect of temperature on the mechanical properties and deformation behaviors of gold nanowires was analyzed. The… More >

  • Open Access

    ARTICLE

    Computer Modeling of Ionic Conductivity in Low Temperature Doped Ceria Solid Electrolytes

    Shu-Feng Lee1, Che-Wun Hong1,2

    CMC-Computers, Materials & Continua, Vol.12, No.3, pp. 223-236, 2009, DOI:10.3970/cmc.2009.012.223

    Abstract Solid oxides, such as ceria (CeO2) doped with cations of lower valance, are potential electrolytes for future solid oxide fuel cells. This is due to the theoretically high ionic conductivity at low operation temperature. This paper investigates the feasibility of two potential electrolytes which are samarium-doped ceria (SDC) and gadolinium-doped ceria (GDC) to replace the traditional yttria-stablized zirconia (YSZ). Molecular simulation techniques were employed to study the influence of different dopant concentrations at different operation temperatures on the ionic conductivity from the atomistic perspective. Simulation results show that the optimized ionic conductivity occurs at 11.11mol% concentration using both dopants of… More >

  • Open Access

    ARTICLE

    Determination of Temperature-Dependent Elasto-Plastic Properties of Thin-Film by MD Nanoindentation Simulations and an Inverse GA/FEM Computational Scheme

    D. S. Liu1, C. Y. Tsai1, S. R. Lyu2

    CMC-Computers, Materials & Continua, Vol.11, No.2, pp. 147-164, 2009, DOI:10.3970/cmc.2009.011.147

    Abstract This study presents a novel numerical method for extracting the tempe -rature-dependent mechanical properties of the gold and aluminum thin-films. In the proposed approach, molecular dynamics (MD) simulations are performed to establish the load-displacement response of the thin substrate nanoindented at temperatures ranging from 300-900 K. A simple but effective procedure involving genetic algorithm (GA) and finite element method (FEM) is implemented to extract the material constants of the gold and aluminum substrates. The material constants are then used to construct the corresponding stress-strain curve, from which the elastic modulus, yield stress and the tangent modulus of the thin film… More >

  • Open Access

    ARTICLE

    Influence of Temperature and High Electric Field on Power Consumption by Piezoelectric Actuated Integrated Structure

    Deepak A Apte1, Ranjan Ganguli1,2

    CMC-Computers, Materials & Continua, Vol.10, No.2, pp. 139-162, 2009, DOI:10.3970/cmc.2009.010.139

    Abstract The influence of electric field and temperature on power consumption of piezoelectric actuated integrated structure is studied by using a single degree of freedom mass-spring-damper system model coupled with a piezoactuator. The material lead zirconate titanate, is considered as it is capable of producing relatively high strains (e.g., 3000με). Actuators are often subject to high electric fields to increase the induced strain produced, resulting in field dependant piezoelectric coefficient d31, dielectric coefficient ε33 and dissipation factor δ. Piezostructures are also likely to be used across a wide range of temperatures in aerospace and undersea operations. Again, the piezoelectric properties can… More >

  • Open Access

    ARTICLE

    Comparison of New Formulations for Martensite Start Temperature of Fe-Mn-Si Shape Memory Alloys Using Geneting Programming and Neural Networks

    CMC-Computers, Materials & Continua, Vol.10, No.1, pp. 65-96, 2009, DOI:10.3970/cmc.2009.010.065

    Abstract This work proposed an alternative formulation for the prediction of martensite start temperature (Ms) of Fe-Mn-Si shape memory alloys (SMAs) depending on the various compositions and heat treatment techniques by using Neural Network (NN) and genetic programming (GP) soft computing techniques. The training and testing patterns of the proposed NN and GP formulations are based on well established experimental results from the literature. The NN and GP based formulation results are compared with experimental results and found to be quite reliable with a very high correlation (R2=0.955 for GEP and 0.999 for NN). More >

Displaying 361-370 on page 37 of 369. Per Page