Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (41)
  • Open Access


    Unleashing User Requirements from Social Media Networks by Harnessing the Deep Sentiment Analytics

    Deema Mohammed Alsekait1,*, Asif Nawaz2, Ayman Nabil3, Mehwish Bukhari2, Diaa Salama AbdElminaam3,4,5,6,*

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 1031-1054, 2024, DOI:10.32604/csse.2024.051847

    Abstract The article describes a novel method for sentiment analysis and requirement elicitation from social media feedback, leveraging advanced machine learning techniques. This innovative approach automates the extraction and classification of user requirements by analyzing sentiment in data gathered from social media platforms such as Twitter and Facebook. Utilizing APIs (Application Programming Interface) for data collection and Graph-based Neural Networks (GNN) for feature extraction, the proposed model efficiently processes and analyzes large volumes of unstructured user-generated content. The preprocessing pipeline includes data cleaning, normalization, and tokenization, ensuring high-quality input for the sentiment analysis model. By classifying… More >

  • Open Access


    A Multivariate Relevance Frequency Analysis Based Feature Selection for Classification of Short Text Data

    Saravanan Arumugam*

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 989-1008, 2024, DOI:10.32604/csse.2024.051770

    Abstract Text mining presents unique challenges in extracting meaningful information from the vast volumes of digital documents. Traditional filter feature selection methods often fall short in handling the complexities of short text data. To address this issue, this paper presents a novel approach to feature selection in text classification, aiming to overcome challenges posed by high dimensionality and reduced accuracy in the face of increasing digital document volumes. Unlike traditional filter feature selection techniques, the proposed method, Multivariate Relevance Frequency Analysis, offers a tailored solution for diverse text data types. By integrating positive, negative, and dependency… More >

  • Open Access


    Analyzing COVID-19 Discourse on Twitter: Text Clustering and Classification Models for Public Health Surveillance

    Pakorn Santakij1, Samai Srisuay2,*, Pongporn Punpeng1

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 665-689, 2024, DOI:10.32604/csse.2024.045066

    Abstract Social media has revolutionized the dissemination of real-life information, serving as a robust platform for sharing life events. Twitter, characterized by its brevity and continuous flow of posts, has emerged as a crucial source for public health surveillance, offering valuable insights into public reactions during the COVID-19 pandemic. This study aims to leverage a range of machine learning techniques to extract pivotal themes and facilitate text classification on a dataset of COVID-19 outbreak-related tweets. Diverse topic modeling approaches have been employed to extract pertinent themes and subsequently form a dataset for training text classification models.… More >

  • Open Access


    ABMRF: An Ensemble Model for Author Profiling Based on Stylistic Features Using Roman Urdu

    Aiman1, Muhammad Arshad1, Bilal Khan1, Khalil Khan2, Ali Mustafa Qamar3,*, Rehan Ullah Khan4

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 301-317, 2024, DOI:10.32604/iasc.2024.045402

    Abstract This study explores the area of Author Profiling (AP) and its importance in several industries, including forensics, security, marketing, and education. A key component of AP is the extraction of useful information from text, with an emphasis on the writers’ ages and genders. To improve the accuracy of AP tasks, the study develops an ensemble model dubbed ABMRF that combines AdaBoostM1 (ABM1) and Random Forest (RF). The work uses an extensive technique that involves text message dataset pretreatment, model training, and assessment. To evaluate the effectiveness of several machine learning (ML) algorithms in classifying age… More >

  • Open Access


    Relational Turkish Text Classification Using Distant Supervised Entities and Relations

    Halil Ibrahim Okur1,2,*, Kadir Tohma1, Ahmet Sertbas2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2209-2228, 2024, DOI:10.32604/cmc.2024.050585

    Abstract Text classification, by automatically categorizing texts, is one of the foundational elements of natural language processing applications. This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata (Wikipedia database) database and BERT-based pre-trained Named Entity Recognition (NER) models. Focusing on a significant challenge in the field of natural language processing (NLP), the research evaluates the potential of using entity and relational information to extract deeper meaning from texts. The adopted methodology encompasses a comprehensive approach that includes text preprocessing, entity detection, and the integration of… More >

  • Open Access


    Gate-Attention and Dual-End Enhancement Mechanism for Multi-Label Text Classification

    Jieren Cheng1,2, Xiaolong Chen1,*, Wenghang Xu3, Shuai Hua3, Zhu Tang1, Victor S. Sheng4

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1779-1793, 2023, DOI:10.32604/cmc.2023.042980

    Abstract In the realm of Multi-Label Text Classification (MLTC), the dual challenges of extracting rich semantic features from text and discerning inter-label relationships have spurred innovative approaches. Many studies in semantic feature extraction have turned to external knowledge to augment the model’s grasp of textual content, often overlooking intrinsic textual cues such as label statistical features. In contrast, these endogenous insights naturally align with the classification task. In our paper, to complement this focus on intrinsic knowledge, we introduce a novel Gate-Attention mechanism. This mechanism adeptly integrates statistical features from the text itself into the semantic… More >

  • Open Access


    An Efficient Character-Level Adversarial Attack Inspired by Textual Variations in Online Social Media Platforms

    Jebran Khan1, Kashif Ahmad2, Kyung-Ah Sohn1,3,*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2869-2894, 2023, DOI:10.32604/csse.2023.040159

    Abstract In recent years, the growing popularity of social media platforms has led to several interesting natural language processing (NLP) applications. However, these social media-based NLP applications are subject to different types of adversarial attacks due to the vulnerabilities of machine learning (ML) and NLP techniques. This work presents a new low-level adversarial attack recipe inspired by textual variations in online social media communication. These variations are generated to convey the message using out-of-vocabulary words based on visual and phonetic similarities of characters and words in the shortest possible form. The intuition of the proposed scheme… More >

  • Open Access


    Tackling Faceless Killers: Toxic Comment Detection to Maintain a Healthy Internet Environment

    Semi Park, Kyungho Lee*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 813-826, 2023, DOI:10.32604/cmc.2023.035313

    Abstract According to BBC News, online hate speech increased by 20% during the COVID-19 pandemic. Hate speech from anonymous users can result in psychological harm, including depression and trauma, and can even lead to suicide. Malicious online comments are increasingly becoming a social and cultural problem. It is therefore critical to detect such comments at the national level and detect malicious users at the corporate level. To achieve a healthy and safe Internet environment, studies should focus on institutional and technical topics. The detection of toxic comments can create a safe online environment. In this study,… More >

  • Open Access


    Ensemble Deep Learning Framework for Situational Aspects-Based Annotation and Classification of International Student’s Tweets during COVID-19

    Shabir Hussain1, Muhammad Ayoub2, Yang Yu1, Junaid Abdul Wahid1, Akmal Khan3, Dietmar P. F. Moller4, Hou Weiyan1,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5355-5377, 2023, DOI:10.32604/cmc.2023.036779

    Abstract As the COVID-19 pandemic swept the globe, social media platforms became an essential source of information and communication for many. International students, particularly, turned to Twitter to express their struggles and hardships during this difficult time. To better understand the sentiments and experiences of these international students, we developed the Situational Aspect-Based Annotation and Classification (SABAC) text mining framework. This framework uses a three-layer approach, combining baseline Deep Learning (DL) models with Machine Learning (ML) models as meta-classifiers to accurately predict the sentiments and aspects expressed in tweets from our collected Student-COVID-19 dataset. Using the… More >

  • Open Access


    Novel Machine Learning–Based Approach for Arabic Text Classification Using Stylistic and Semantic Features

    Fethi Fkih1,2,*, Mohammed Alsuhaibani1, Delel Rhouma1,2, Ali Mustafa Qamar1

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5871-5886, 2023, DOI:10.32604/cmc.2023.035910

    Abstract Text classification is an essential task for many applications related to the Natural Language Processing domain. It can be applied in many fields, such as Information Retrieval, Knowledge Extraction, and Knowledge modeling. Even though the importance of this task, Arabic Text Classification tools still suffer from many problems and remain incapable of responding to the increasing volume of Arabic content that circulates on the web or resides in large databases. This paper introduces a novel machine learning-based approach that exclusively uses hybrid (stylistic and semantic) features. First, we clean the Arabic documents and translate them… More >

Displaying 1-10 on page 1 of 41. Per Page