Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (72)
  • Open Access

    ARTICLE

    Semi Analytical Solution of MHD and Heat Transfer of Couple Stress Fluid over a Stretching Sheet with Radiation in Porous Medium

    Sara I. Abdelsalam1,2,*, M. Khairy3, W. Abbas3, Ahmed M. Megahed4, M. S. Emam5

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1833-1846, 2025, DOI:10.32604/fhmt.2025.069711 - 31 December 2025

    Abstract This comprehensive research examines the dynamics of magnetohydrodynamic (MHD) flow and heat transfer within a couple stress fluid. The investigation specifically focuses on the fluid’s behavior over a vertical stretching sheet embedded within a porous medium, providing valuable insights into the complex interactions between fluid mechanics, thermal transport, and magnetic fields. This study accounts for the significant impact of heat generation and thermal radiation, crucial factors for enhancing heat transfer efficiency in various industrial and technological contexts. The research employs mathematical techniques to simplify complex partial differential equations (PDEs) governing fluid flow and heat transfer.… More >

  • Open Access

    ARTICLE

    Double Diffusion Convection in Sisko Nanofluids with Thermal Radiation and Electroosmotic Effects: A Morlet-Wavelet Neural Network Approach

    Arshad Riaz1,*, Misbah Ilyas1, Muhammad Naeem Aslam2, Safia Akram3, Sami Ullah Khan4, Ghaliah Alhamzi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3481-3509, 2025, DOI:10.32604/cmes.2025.072513 - 23 December 2025

    Abstract Peristaltic transport of non-Newtonian nanofluids with double diffusion is essential to biological engineering, microfluidics, and manufacturing processes. The authors tackle the key problem of Sisko nanofluids under double diffusion convection with thermal radiations and electroosmotic effects. The study proposes a solution approach by using Morlet-Wavelet Neural Networks that can effectively solve this complex problem by their superior ability in the capture of nonlinear dynamics. These convergence analyses were calculated across fifty independent runs. Theil’s Inequality Coefficient and the Mean Squared Error values range from 10−7 to 10−5 and 10−7 to 10−10, respectively. These values showed the proposed More >

  • Open Access

    ARTICLE

    Numerical Analysis of Heat and Mass Transfer in Tangent Hyperbolic Fluids Using a Two-Stage Exponential Integrator with Compact Spatial Discretization

    Mairaj Bibi1, Muhammad Shoaib Arif 2, Yasir Nawaz3, Nabil Kerdid4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 537-569, 2025, DOI:10.32604/cmes.2025.070362 - 30 October 2025

    Abstract This study develops a high-order computational scheme for analyzing unsteady tangent hyperbolic fluid flow with variable thermal conductivity, thermal radiation, and coupled heat and mass transfer effects. A modified two-stage Exponential Time Integrator is introduced for temporal discretization, providing second-order accuracy in time. A compact finite difference method is employed for spatial discretization, yielding sixth-order accuracy at most grid points. The proposed framework ensures numerical stability and convergence when solving stiff, nonlinear parabolic systems arising in fluid flow and heat transfer problems. The novelty of the work lies in combining exponential integrator schemes with compact… More >

  • Open Access

    ARTICLE

    Role of Thermal Radiation Effect on Unsteady Dissipative MHD Mixed Convection of Hybrid Nanofluid over an Inclined Stretching Sheet with Chemical Reaction

    Shaik Mohammed Ibrahim1, Bhavanam Naga Lakshmi2, Chundru Maheswari3, Hasan Koten4,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1555-1574, 2025, DOI:10.32604/fhmt.2025.069392 - 31 October 2025

    Abstract Magnetohydrodynamic (MHD) radiative chemically reactive mixed convection flow of a hybrid nanofluid (Al2O3Cu/H2O) across an inclined, porous, and stretched sheet is examined in this study, along with its unsteady heat and mass transport properties. The hybrid nanofluid’s enhanced heat transfer efficiency is a major benefit in high-performance engineering applications. It is composed of two separate nanoparticles suspended in a base fluid and is chosen for its improved thermal properties. Thermal radiation, chemical reactions, a transverse magnetic field, surface stretching with time, injection or suction through the porous medium, and the effect of inclination, which introduces gravity-induced… More >

  • Open Access

    ARTICLE

    Magnetohydrodynamic Jeffrey Nanofluid Flow across an Inclined Stretching Sheet via Porous Media with Slip Effects

    Pennelli Saila Kumari1, Shaik Mohammed Ibrahim1,*, Prathi Vijaya Kumar2, Giulio Lorenzini3,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1639-1660, 2025, DOI:10.32604/fhmt.2025.069063 - 31 October 2025

    Abstract In this paper, the authors examine various slip effects on the magnetic field and thermal radiative impacts on the flow, mass and heat transfer of a Jeffrey nanofluid over a 2-dimensional inclined stretching sheet by a porous media. The offered work is modelled to be in the form of a combination of coupled highly nonlinear partial differential equations in dimensional contexts. Governing equations were obtained, dimensionless parameters were defined in terms of similarity parameters, and the solutions were obtained by the Homotopy Analysis Method (HAM). The analysis is significant as the effects of viscosity are… More >

  • Open Access

    ARTICLE

    Spectral Quasi-Linearization Study of Variable Viscosity Casson Nanofluid Flow under Buoyancy and Magnetic Fields

    B. Rajesh1, Fateh Mebarek-Oudina2,3,4,*, N. Vishnu Ganesh1, Qasem M. Al-Mdallal5, Sami Ullah Khan6, Murali Gundagnai7, Hillary Muzara8

    Frontiers in Heat and Mass Transfer, Vol.23, No.4, pp. 1243-1260, 2025, DOI:10.32604/fhmt.2025.066782 - 29 August 2025

    Abstract The behavior of buoyancy-driven magnetohydrodynamic (MHD) nanofluid flows with temperature-sensitive viscosity plays a pivotal role in high-performance thermal systems such as electronics cooling, nuclear reactors, and metallurgical processes. This study focuses on the boundary layer flow of a Casson-based sodium alginate Fe3O4 nanofluid influenced by magnetic field-dependent viscosity and thermal radiation, as it interacts with a vertically stretching sheet under dissipative conditions. To manage the inherent nonlinearities, Lie group transformations are applied to reformulate the governing boundary layer equations into similarity forms. These reduced equations are then solved via the Spectral Quasi-Linearization Method (SQLM), ensuring high More >

  • Open Access

    ARTICLE

    Numerical Simulation of Blood Flow Dynamics in a Stenosed Artery Enhanced by Copper and Alumina Nanoparticles

    Haris Alam Zuberi1, Madan Lal1, Amol Singh1, Nurul Amira Zainal2,3,*, Ali J. Chamkha4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1839-1864, 2025, DOI:10.32604/cmes.2024.056661 - 27 January 2025

    Abstract Nanotechnology holds immense importance in the biomedical field due to its ability to revolutionize healthcare on a molecular scale. Motivated by the imperative of enhancing patient outcomes, a comprehensive numerical simulation study on the dynamics of blood flow in a stenosed artery, focusing on the effects of copper and alumina nanoparticles, is conducted. The study employs a 2-dimensional Newtonian blood flow model infused with copper and alumina nanoparticles, considering the influence of a magnetic field, thermal radiation, and various flow parameters. The governing differential equations are first non-dimensionalized to facilitate analysis and subsequently solved using… More >

  • Open Access

    ARTICLE

    Impact of Pollutant Concentration and Particle Deposition on the Radiative Flow of Casson-Micropolar Fluid between Parallel Plates

    Ghaliah Alhamzi1, Badr Saad T. Alkahtani2,*, Ravi Shanker Dubey3, Vinutha Kalleshachar4, Neelima Nizampatnam5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 665-690, 2025, DOI:10.32604/cmes.2024.055500 - 17 December 2024

    Abstract Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management. Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations. The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels. This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition. To explore the mass and heat transport features, thermophoretic particle deposition and thermal radiation are considered. The… More >

  • Open Access

    ARTICLE

    Unsteady Flow of Hybrid Nanofluid with Magnetohydrodynamics-Radiation-Natural Convection Effects in a U-Shaped Wavy Porous Cavity

    Taher Armaghani1, Lioua Kolsi2, Najiyah Safwa Khashi’ie3,*, Ahmed Muhammed Rashad4, Muhammed Ahmed Mansour5, Taha Salah6, Aboulbaba Eladeb7

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2225-2251, 2024, DOI:10.32604/cmes.2024.056676 - 31 October 2024

    Abstract In this paper, the unsteady magnetohydrodynamic (MHD)-radiation-natural convection of a hybrid nanofluid within a U-shaped wavy porous cavity is investigated. This problem has relevant applications in optimizing thermal management systems in electronic devices, solar energy collectors, and other industrial applications where efficient heat transfer is very important. The study is based on the application of a numerical approach using the Finite Difference Method (FDM) for the resolution of the governing equations, which incorporates the Rosseland approximation for thermal radiation and the Darcy-Brinkman-Forchheimer model for porous media. It was found that the increase of Hartmann number… More >

  • Open Access

    ARTICLE

    Unsteady MHD Casson Nanofluid Flow Past an Exponentially Accelerated Vertical Plate: An Analytical Strategy

    T. Aghalya, R. Tamizharasi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 431-460, 2024, DOI:10.32604/cmes.2024.046635 - 16 April 2024

    Abstract In this study, the characteristics of heat transfer on an unsteady magnetohydrodynamic (MHD) Casson nanofluid over an exponentially accelerated vertical porous plate with rotating effects were investigated. The flow was driven by the combined effects of the magnetic field, heat radiation, heat source/sink and chemical reaction. Copper oxide () and titanium oxide () are acknowledged as nanoparticle materials. The nondimensional governing equations were subjected to the Laplace transformation technique to derive closed-form solutions. Graphical representations are provided to analyze how changes in physical parameters, such as the magnetic field, heat radiation, heat source/sink and chemical… More >

Displaying 1-10 on page 1 of 72. Per Page