Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (168)
  • Open Access

    PROCEEDINGS

    Solar Energy Storage in Deep Saline Aquifers: Three-Dimensional HydroThermo Modeling and Feasibility Analyses

    Yanyong Wang1,2, Kunpeng Zhong1, Xiaoguang Wang1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09443

    Abstract The storage of solar energy in the subsurface in terms of heat is considered as a promising way for energy storage and conversion in future, which has a great potential to solve the temporal and spatial mismatch between energy demand and supply. Thermal energy storage in deep saline aquifers is capable to convert intermittent solar energy into high temperature stable geothermal energy. In this study, we propose a new solar energy storage and conversion system in which solar energy is firstly converted into heat using parabolic trough and then thermal energy storage in deep saline aquifer is conducted by high… More >

  • Open Access

    PROCEEDINGS

    Three-Dimensional Numerical Simulation of Large-Scale LandslideGenerated Surging Waves with a GPU‒Accelerated Soil‒Water Coupled SPH Model

    Can Huang1,*, Xiaoliang Wang1, Qingquan Liu1, Huaning Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09824

    Abstract Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslidegenerated water waves, is simulated to validate this… More >

  • Open Access

    ARTICLE

    Spatio-Temporal Characteristics of Heat Transfer of Methanation in Fluidized Bed for Pyrolysis and Gasification Syngas of Organic Solid Waste

    Danyang Shao1, Xiaojia Wang1,*, Delu Chen1, Fengxia An1,2

    Journal of Renewable Materials, Vol.11, No.10, pp. 3659-3680, 2023, DOI:10.32604/jrm.2023.029220

    Abstract Methanation is an effective way to efficiently utilize product gas generated from the pyrolysis and gasification of organic solid wastes. To deeply study the heat transfer and mass transfer mechanisms in the reactor, a successful three-dimensional comprehensive model has been established. Multiphase flow behavior and heat transfer mechanisms were investigated under reference working conditions. Temperature is determined by the heat release of the reaction and the heat transfer of the gas-solid flow. The maximum temperature can reach 951 K where the catalyst gathers. In the simulation, changes in the gas inlet velocity and catalyst flow rate were made to explore… More >

  • Open Access

    ARTICLE

    UNSTEADY MHD THREE-DIMENSIONAL CASSON NANOFLUID FLOW OVER A POROUS LINEAR STRETCHING SHEET WITH SLIP CONDITION

    I.S. Oyelakina,† , S. Mondala,* , P. Sibandaa

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.37

    Abstract In this paper we study the effects of thermal radiation, heat and mass transfer on the unsteady magnetohydrodynamic(MHD) flow of a three dimensional Casson nanofluid. The flow is subject to partial slip and convective conditions. The traditional model which includes the effects of Brownian motion and thermophoresis is revised so that the nanofluid particle volume fraction on the boundary is not actively controlled. In this respect the problem is more realistic. The dimensionless governing equations were solved using the spectral quasi-linearisation method. This work aims to fill the gap in existing literature by showing the effects of porosity, magnetic field… More >

  • Open Access

    ARTICLE

    HEAT AND MASS TRANSFER AND ENTROPY GENERATION INSIDE 3D TRAPEZOIDAL SOLAR DISTILLER

    Walid Aicha,c, Lioua Kolsia,d,*, Abdelkarim Aydie,f, Abdullah A.A.A Al-Rashedb , Noureddine Ait Messaoudenea , Mohamed Naceur Borjinid

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.8

    Abstract Numerical study of double-diffusive natural convection flow and entropy generation in 3D trapezoidal solar distiller was performed using computational fluid dynamics (CFD). In this research the flow, provoked by the interaction of chemical species diffusions and the thermal energy, is assumed to be laminar. Using potential vector-vorticity formulation in its three-dimensional form, the governing equations are formulated and solved by the numerical methodology based on the finite volume method. The main objective is to analyze the effects of buoyancy ratio for opposed temperature and concentration gradients and to focus the attention on three-dimensional aspects and generated entropy. The occurring heat… More >

  • Open Access

    ARTICLE

    The Microparticles SiOx Loaded on PAN-C Nanofiber as Three-Dimensional Anode Material for High-Performance Lithium-Ion Batteries

    Jiahao Wang1, Jie Zhou2, Zhengping Zhao2,*, Feng Chen1, Mingqiang Zhong1

    Journal of Renewable Materials, Vol.11, No.8, pp. 3309-3332, 2023, DOI:10.32604/jrm.2023.027278

    Abstract Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane (PDMS) and polyacrylonitrile (PAN) as precursors via electrospinning and freeze-drying successfully. In contrast to conventional carbon covering Si-based anode materials, the C/SiOx structure is made up of PAN-C, a 3D carbon substance, and SiOx loading steadily on PAN-C. The PAN carbon nanofibers and loaded SiOx from pyrolyzed PDMS give increased conductivity and a stable complex structure. When employed as lithium-ion batteries (LIBs) anode materials, C/SiOx-1% composites were discovered to have an extremely high lithium storage capacity and good cycle performance. At a current density of 100 mA/g, its reversible capacity remained at… More > Graphic Abstract

    The Microparticles SiOx Loaded on PAN-C Nanofiber as Three-Dimensional Anode Material for High-Performance Lithium-Ion Batteries

  • Open Access

    ARTICLE

    Optimized Three-Dimensional Cardiovascular Magnetic Resonance Whole Heart Imaging Utilizing Non-Selective Excitation and Compressed Sensing in Children and Adults with Congenital Heart Disease

    Ingo Paetsch1,*, Roman Gebauer2, Christian Paech2, Frank-Thomas Riede2, Sabrina Oebel1, Andreas Bollmann1, Christian Stehning3, Jouke Smink4, Ingo Daehnert2, Cosima Jahnke1

    Congenital Heart Disease, Vol.18, No.3, pp. 279-294, 2023, DOI:10.32604/chd.2023.029634

    Abstract Background: In congenital heart disease (CHD) patients, detailed three-dimensional anatomy depiction plays a pivotal role for diagnosis and therapeutical decision making. Hence, the present study investigated the applicability of an advanced cardiovascular magnetic resonance (CMR) whole heart imaging approach utilizing nonselective excitation and compressed sensing for anatomical assessment and interventional guidance of CHD patients in comparison to conventional dynamic CMR angiography. Methods: 86 consecutive pediatric patients and adults with congenital heart disease (age, 1 to 74 years; mean, 35 years) underwent CMR imaging including a free-breathing, ECG-triggered 3D nonselective SSFP whole heart acquisition using compressed SENSE (nsWHcs). Anatomical assessability and… More >

  • Open Access

    ARTICLE

    Three-Dimensional Simulation of Hydrodynamic Mechanism of Fluidized Bed Methanation

    Xiaojia Wang1,*, Danyang Shao1, Delu Chen1, Yutong Gong1, Fengxia An1,2

    Journal of Renewable Materials, Vol.11, No.7, pp. 3155-3175, 2023, DOI:10.32604/jrm.2023.027535

    Abstract Organic solid waste (OSW) contains many renewable materials. The pyrolysis and gasification of OSW can realize resource utilization, and its products can be used for methanation reaction to produce synthetic natural gas in the specific reactor. In order to understand the dynamic characteristics of the reactor, a three-dimensional numerical model has been established by the method of Computational Fluid Dynamics (CFD). Along the height of the reactor, the particle distribution in the bed becomes thinner and the mean solid volume fraction decreases from 4.18% to 0.37%. Meanwhile, the pressure fluctuation range decreased from 398.76 Pa at the entrance to a… More > Graphic Abstract

    Three-Dimensional Simulation of Hydrodynamic Mechanism of Fluidized Bed Methanation

  • Open Access

    ARTICLE

    COMPREHENSIVE EXAMINATION OF THE THREE-DIMENSIONAL ROTATING FLOW OF A UCM NANOLIQUID OVER AN EXPONENTIALLY STRETCHABLE CONVECTIVE SURFACE UTILIZING THE OPTIMAL HOMOTOPY ANALYSIS METHOD

    K.V. Prasada, Hanumesh Vaidyaa,*, O. D. Makindeb , K. Vajraveluc , A. Wakifd , Hussain Bashaa

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-12, 2020, DOI:10.5098/hmt.14.11

    Abstract This article explores the three-dimensional (3D) rotating flow of Upper Convected Maxwell (UCM) nanoliquid over an exponentially stretching sheet with a convective boundary condition and zero mass flux for the nanoparticles concentration. The impacts of velocity slip and hall current are being considered. The suitable similarity transformations are employed to reduce the governing partial differential equations into ordinary ones. These systems of equations are highly non-linear, coupled and in turn solved by an efficient semi-analytical scheme known as optimal homotopy analysis method (OHAM). The effects of various physical constraints on velocity, temperature, and concentration fields are analyzed graphically and discussed… More >

  • Open Access

    ARTICLE

    A Three-Dimensional Model for the Formation Pressure in Wellbores under Uncertainty

    Jiawei Zhang*, Qing Wang, Hongchun Huang, Haige Wang, Guodong Ji, Meng Cui, Hongyuan Zhang

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2305-2314, 2023, DOI:10.32604/fdmp.2023.026304

    Abstract Formation pressure is the key parameter for the analysis of wellbore safety. With increasing drilling depth, however, the behavior of this variable becomes increasingly complex. In this work, a 3D model of the formation pressure under uncertainty is presented. Moreover a relevant algorithm is elaborated. First, the logging data of regional key drilling wells are collected and a one-dimensional formation pressure profile along the well depth is determined. Then, a 3D model of regional formation pressure of the hierarchical group layer is defined by using the Kriging interpolation algorithm relying on a support vector machine (SVM) and the formation pressure… More >

Displaying 11-20 on page 2 of 168. Per Page